首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   529篇
  免费   20篇
  国内免费   12篇
化学   396篇
晶体学   5篇
力学   19篇
数学   71篇
物理学   70篇
  2024年   1篇
  2023年   9篇
  2022年   20篇
  2021年   16篇
  2020年   30篇
  2019年   19篇
  2018年   29篇
  2017年   18篇
  2016年   28篇
  2015年   28篇
  2014年   30篇
  2013年   63篇
  2012年   29篇
  2011年   35篇
  2010年   31篇
  2009年   23篇
  2008年   31篇
  2007年   20篇
  2006年   20篇
  2005年   24篇
  2004年   14篇
  2003年   8篇
  2002年   9篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
  1934年   1篇
排序方式: 共有561条查询结果,搜索用时 9 毫秒
71.
72.
73.
New derivatives of triazole‐isoxazole were synthesized through a four‐step reaction starting from various ethyl 4‐aryl‐2,4‐dioxobutanoate derivatives. Finally, all compounds were examined by MTT assays for cytotoxic activity in two human breast cancer cell lines (MCF‐7 and T‐47D).  相似文献   
74.
Reaction of 2‐amino‐N‐substituted benzamides and dimethyl acetylenedicarboxylate (DMAD) in the presence of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) in H2O at room temperature led to the formation of novel 1,2,3,4‐tetrahydroquinazolinones.  相似文献   
75.
Chemical looping combustion (CLC) is a novel method of carbon capture and sequestration. It facilitates CO2 capture by lower energy penalties compared with other methods in this category. The major challenges encountered in CLC are oxygen carrier, reactor and fuel-type selection. A proper combination of these factors is required for an efficient CLC. There have been several studies with regard to oxygen carriers applicable to these processes: novel oxygen carriers, single perovskites and potential oxygen carriers, double perovskites, have been investigated for their oxygen capture and release properties in a number of studies. Different kinds of reactors have also been proposed for use in CLC processes. This paper presents information on the materials capable of oxygen storage and release and the different kinds of reactors investigated for CLC in different studies. It has been shown that, although there are several oxygen carriers and reactors with the desired function and efficiency for CLC, there remains the need for further improvement and optimisation in both areas. © 2014 Institute of Chemistry, Slovak Academy of Sciences  相似文献   
76.
Characterizing and controlling the interlayer orientations and stacking orders of two‐dimensional (2D) bilayer crystals and van der Waals (vdW) heterostructures is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) crystals that result from different layer stackings provide an ideal platform to study the stacking configurations in 2D bilayer crystals. Through a controllable vapor‐phase deposition method, bilayer GaSe crystals were selectively grown and their two preferred 0° or 60° interlayer rotations were investigated. The commensurate stacking configurations (AA′ and AB stacking) in as‐grown bilayer GaSe crystals are clearly observed at the atomic scale, and the Ga‐terminated edge structure was identified using scanning transmission electron microscopy. Theoretical analysis reveals that the energies of the interlayer coupling are responsible for the preferred orientations among the bilayer GaSe crystals.  相似文献   
77.
78.
In this study density functional theory (DFT) calculations at B3LYP/6-31G(d), B3LYP/6-31+G(d) and B3LYP/6-311+G(2df,2p) levels for geometry optimization and total energy calculation were applied for investigation of the important energy-minimum conformations and transition-state of 1,2-, 1,3-, and 1,4-dithiepanes. Moreover, ab initio calculations at HF/6-31G(d) level of theory for geometry optimization and MP2/6-311G(d)//HF/ 6-31G(d) level for a single-point total energy calculation were reported for different conformers. The obtained results reveal that, the twist-chair conformer is a global minimum for all of these compounds. Also, two local minimum were found in each case, which are twisted-chair and twisted-boat conformers. The boat and chair geometries are transition states. The minimum energy conformation of 1,2-dithiepane is more stable than the lowest energy forms of 1,3-dithiepane and 1,4-dithiepane. Furthermore, the anomeric effect was investigated for 1,3-dithiepane by the natural bond orbital method. The computational results of this study shows that all conformers of 1,3-dithiepane have a hypercojugation system. Finally, the 13C NMR chemical shifts for the conformers of 1,4-dithiepane were calculated, which have good correlation with their experimental values.  相似文献   
79.
Abstract

In the present study, evaluation of the antiproliferative activity of Pachypodium lamerei Drake leaves (family Apocyaceae) against human breast cancer cell lines MDA-MB-231 was done for the total methanolic extract, crude alkaloidal mixture and ursolic acid using the MTT colorimetric assay. The methanolic extract showed the strongest antiproliferative activity followed by ursolic acid and crude alkaloidal fraction with an IC50 equal to 6.2, 14.55 and 56.3?µg/ml respectively compared to oleocanthal. It is the first record for the LC/ESI-MS/MS alkaloidal profiling of the leaves of P. lamerei. Seven alkaloids were tentatively identified according to their fragmentation patterns. Four alkaloids were related to the parent indole class and two alkaloids belong to the quinoline class in addition to one steroidal alkaloid with a pregnan nucleus. Phytochemical investigation of the methanolic extract led to the isolation of three triterpenoidal compounds including ursolic acid, 11,12-didehydroursolic acid lactone and ursolic acid lactone.  相似文献   
80.
The recent global pandemic and its tremendous effect on the price fluctuations of crude oil illustrates the side effects of petroleum dependency more evident than ever. Over the past decades, both academic and industrial communities spared endless efforts in order to replace petroleum-based materials with bio-derived resources. In the current study, a series of shape memory polymer composites (SMPC's) was synthesized from epoxidized vegetable oils, namely canola oil and castor oil fatty acids (COFA's) as a 100% bio-based polyol and isophorone diisocyanate (IPDI) as an isocyanate using a solvent/catalyst-free method in order to eventuate polyurethanes (PU's). Thereafter, graphene oxide (GO) nanoplatelets were synthesized and embedded in the neat PU in order to overcome the thermomechanical drawbacks of the neat matrix. The chemical structure of the synthesized components, as well as the dispersion and distribution levels of the nanoparticles, was characterized. In the following, thermal and mechanical properties as well as shape memory behavior of the specimens were comprehensively investigated. Likewise, the thermal conductivity was determined. This study proves that synthesized PU's based on vegetable oil polyols, including graphene nanoparticles, exhibit proper thermal and mechanical properties, which make them stand as a potential candidate to compete with traditional petroleum-based SMPC's.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号