首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1500篇
  免费   90篇
  国内免费   28篇
化学   1194篇
晶体学   21篇
力学   65篇
数学   122篇
物理学   216篇
  2024年   9篇
  2023年   14篇
  2022年   71篇
  2021年   68篇
  2020年   77篇
  2019年   59篇
  2018年   79篇
  2017年   67篇
  2016年   112篇
  2015年   68篇
  2014年   103篇
  2013年   175篇
  2012年   129篇
  2011年   105篇
  2010年   80篇
  2009年   53篇
  2008年   63篇
  2007年   54篇
  2006年   39篇
  2005年   32篇
  2004年   22篇
  2003年   24篇
  2002年   22篇
  2001年   12篇
  2000年   8篇
  1999年   8篇
  1998年   5篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   5篇
  1992年   5篇
  1991年   5篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1977年   2篇
  1969年   1篇
排序方式: 共有1618条查询结果,搜索用时 15 毫秒
971.
This study deals with drift parameters estimation problems in the sub-fractional Vasicek process given by dxt=θ(μxt)dt+dStH, with θ>0, μR being unknown and t0; here, SH represents a sub-fractional Brownian motion (sfBm). We introduce new estimators θ^ for θ and μ^ for μ based on discrete time observations and use techniques from Nordin–Peccati analysis. For the proposed estimators θ^ and μ^, strong consistency and the asymptotic normality were established by employing the properties of SH. Moreover, we provide numerical simulations for sfBm and related Vasicek-type process with different values of the Hurst index H.  相似文献   
972.
Vicilin has nutraceutical potential and different noteworthy medicative health-promoting biotic diversions, and it is remarkable against pathogenic microorganisms and insects. In this study, Vigna aconitifolia vicilin (VacV) has been identified and characterized from the seed of Vigna aconitifolia (Jacq.) Marechal (Moth beans). LC-MS/MS analysis of VacV provided seven random fragmented sequences comprising 238 residues, showing significant homology with already reported Vigna radiata vicilin (VraV). VacV was purified using ammonium sulfate precipitation (60%) followed by size exclusion chromatography on Hi-Load 16/60 Superdex 200 pg column and anion-exchange chromatography (Hi trap Q FF column). Purified VacV showed a major ~50 kDa band and multiple lower bands on 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under both reduced and non-reduced conditions. After all, a three-dimensional molecular structure of VacV was predicted, which showed β-sheeted molecular conformation similar to crystallographic structure of VraV. All Vicilins from V. aconitifolia and other plants were divided into six sub-groups by phylogenetic analysis, and VacV shared a high degree of similarity with vicilins of Vigna radiata, Pisum sativum, Lupinus albus, Cicer arietinum and Glycine max. Additionally, VacV (20 μg) has significant growth inhibition against different pathogenic bacteria along strong antifungal activity (50 μg). Likewise, VacV (3.0 mg) produced significant growth reduction in Rice Weevil Sitophilus oryzae larvae after 9 days compared with control. Furthermore, by using MMT assay, the cytotoxicity effect of VacV on the growth of HepG2 liver cancerous cells was tested. VacV showed cytotoxicity against the HepG-2 line and the acquired value was 180 µg after 48 h. Finally, we performed molecular docking against caspase-3 protein (PDB ID: 3DEI) for VacV bioactive receptor interface residues. Hence, our results reveal that VacV, has nutraceutical potential and moth beans can be used as a rich resource of functional foods.  相似文献   
973.
Chlorothricin (CHL) belongs to a spirotetronate antibiotic family produced by Streptomyces antibioticus that inhibits pyruvate carboxylase and malate dehydrogenase. For the biosynthesis of CHL, ChlB3 plays a crucial role by introducing the 6-methylsalicylic acid (6MSA) moiety to ChlB2, an acyl carrier protein (ACP). However, the structural insight and catalytic mechanism of ChlB3 was unclear. In the current study, the crystal structure of ChlB3 was solved at 3.1 Å-resolution and a catalytic mechanism was proposed on the basis of conserved residues of structurally related enzymes. ChlB3 is a dimer having the same active sites as CerJ (a structural homologous enzyme) and uses a KSIII-like fold to work as an acyltransferase. The relaxed substrate specificity of ChlB3 was defined by its catalytic efficiencies (kcat/Km) for non-ACP tethered synthetic substrates such as 6MSA-SNAC, acetyl-SNAC, and cyclohexonyl-SNAC. ChlB3 successfully detached the 6MSA moiety from 6MSA-SNAC substrate and this hydrolytic activity demonstrated that ChlB3 has the potential to catalyze non-ACP tethered substrates. Structural comparison indicated that ChlB3 belongs to FabH family and showed 0.6–2.5 Å root mean square deviation (RMSD) with structural homologous enzymes. Molecular docking and dynamics simulations were implemented to understand substrate active site and structural behavior such as the open and closed conformation of the ChlB3 protein. The resultant catalytic and substrate recognition mechanism suggested that ChlB3 has the potential to use non-native substrates and minimize the labor of expressing ACP protein. This versatile acyltransferase activity may pave the way for manufacturing CHL variants and may help to hydrolyze several thioester-based compounds.  相似文献   
974.
Verbena officinalis is commonly used in traditional medicine to treat many ailments. Extracts of this plant are therapeutic agents for the potential treatment of different diseases, including colorectal and liver cancers, but have not been explored for their anti-melanoma potential so far. The goal of the current work was to prepare a methanolic extract and fractionate it using hexane, chloroform, ethyl acetate, butanol, and acetone to get semi-purified products. These semi-purified fractions were studied for their potency against melanoma cell lines. The three potent fractions (HA, VO79, and EA3) demonstrated 50% inhibition concentration (IC50) values as low as 2.85 µg/mL against the LOX IMVI cell line. All three fractions showed similar potency in inhibiting the growth of the B16 cells, a murine melanoma cell line. Based on high-resolution mass spectrometry (HRMS) data, for the first time, we report on lupulone A from this plant. LC-MS data also indicated the presence of hedergonic acid, serjanic acid, and other compounds in V. officinalis extracts.  相似文献   
975.
The current study aimed to explore the crude oils obtained from the n-hexane fraction of Scutellaria edelbergii and further analyzed, for the first time, for their chemical composition, in vitro antibacterial, antifungal, antioxidant, antidiabetic, and in vivo anti-inflammatory, and analgesic activities. For the phytochemical composition, the oils proceeded to gas chromatography-mass spectrometry (GC-MS) analysis and from the resultant chromatogram, 42 bioactive constituents were identified. Among them, the major components were linoleic acid ethyl ester (19.67%) followed by ethyl oleate (18.45%), linolenic acid methyl ester (11.67%), and palmitic acid ethyl ester (11.01%). Tetrazolium 96-well plate MTT assay and agar-well diffusion methods were used to evaluate the isolated oil for its minimum inhibitory concentrations (MIC), minimum bactericidal concentration (MBC), half-maximal inhibitory concentrations (IC50), and zone of inhibitions that could determine the potential antimicrobial efficacy’s. Substantial antibacterial activities were observed against the clinical isolates comprising of three Gram-negative bacteria, viz., Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, and one Gram-positive bacterial strain, Enterococcus faecalis. The oils were also effective against Candida albicans and Fusarium oxysporum when evaluated for their antifungal potential. Moreover, significant antioxidant potential with IC50 values of 136.4 and 161.5 µg/mL for extracted oil was evaluated through DPPH (1,1-Diphenyl-2-picryl-hydrazyl) and ABTS assays compared with standard ascorbic acid where the IC50 values were 44.49 and 67.78 µg/mL, respectively, against the tested free radicals. The oils was also potent, inhibiting the α-glucosidase (IC50 5.45 ± 0.42 µg/mL) enzyme compared to the standard. Anti-glucosidase potential was visualized through molecular docking simulations where ten compounds of the oil were found to be the leading inhibitors of the selected enzyme based on interactions, binding energy, and binding affinity. The oil was found to be an effective anti-inflammatory (61%) agent compared with diclofenac sodium (70.92%) via the carrageenan-induced assay. An appreciable (48.28%) analgesic activity in correlation with the standard aspirin was observed through the acetic acid-induced writhing bioassay. The oil from the n-hexane fraction of S. edelbergii contained valuable bioactive constituents that can act as in vitro biological and in vivo pharmacological agents. However, further studies are needed to uncover individual responsible compounds of the observed biological potentials which would be helpful in devising novel drugs.  相似文献   
976.
The present work aims at improving the barrier properties of high molecular weight Polyethylene/ graphene nanoplatelets (HMWPE/GnP) nanocomposites by aligning the embedded modified graphene nanoparticles in a magnetic field. Graphene nanoplatelets (GnP) were modified by magnetic Fe2O3 to produce Fe2O3-modified Graphene, GnP-mFe2O3. The magnetic properties of Fe2O3 were previously characterized by the vibrating sample magnetometer (VSM) method and resulting GnP-mFe2O3 nanoparticles were characterized by Fourier transform infrared (FTIR) analysis. HMWPE/GnP nanocomposites were prepared via melt mixing. The prepared nanocomposites were sheeted at high temperatures in a magnetic field using a hot press. The barrier properties of prepared films, HMWPE/GnP and HMWPE/GnP-mFe2O3 were characterized by carrying out a permeation to oxygen experiment as a function of GnP and GnP-mFe2O3 contents. A decrease in gas transmission rate (GTR) was observed for the samples after being subjected to the magnetic field compared to the non-treated sample. The results of differential scanning calorimetry (DSC) and field emission electron microscopy (FESEM) experiments confirmed the orientation of GnP-mFe2O3 nanoparticles in nanocomposites.  相似文献   
977.
The global rapid transition from fossil fuels to renewable energy resources necessitates the implementation of long-duration energy storage technologies owing to the intermittent nature of renewable energy sources. Therefore, the deployment of grid-scale energy storage systems is inevitable. Sulfur-based batteries can be exploited as excellent energy storage devices owing to their intrinsic safety, low cost of raw materials, low risk of environmental hazards, and highest theoretical capacities (gravimetric: 2600 Wh/kg and volumetric: 2800 Wh/L). However, sulfur-based batteries exhibit certain scientific limitations, such as polysulfide crossover, which causes rapid capacity decay and low Coulombic efficiency, thereby hindering their implementation at a commercial scale. In this review article, we focus on the latest research developments between 2012–2023 to improve the separators/membranes and overcome the shuttle effect associated with them. Various categories of ion exchange membranes (IEMs) used in redox batteries, particularly polysulfide redox flow batteries and lithium-sulfur batteries, are discussed in detail. Furthermore, advances in IEM constituents are summarized to gain insights into different fundamental strategies for attaining targeted characteristics, and a critical analysis is proposed to highlight their efficiency in mitigating sulfur cross-shuttling issues. Finally, future prospects and recommendations are suggested for future research toward the fabrication of more effective membranes with desired properties.  相似文献   
978.
Synthesis of 5-aryl-N-(pyrazin-2-yl)thiophene-2-carboxamides (4a–4n) by a Suzuki cross-coupling reaction of 5-bromo-N-(pyrazin-2-yl)thiophene-2-carboxamide (3) with various aryl/heteroaryl boronic acids/pinacol esters was observed in this article. The intermediate compound 3 was prepared by condensation of pyrazin-2-amine (1) with 5-bromothiophene-2-carboxylic acid (2) mediated by TiCl4. The target pyrazine analogs (4a–4n) were confirmed by NMR and mass spectrometry. In DFT calculation of target molecules, several reactivity parameters like FMOs (EHOMO, ELUMO), HOMO–LUMO energy gap, electron affinity (A), ionization energy (I), electrophilicity index (ω), chemical softness (σ) and chemical hardness (η) were considered and discussed. Effect of various substituents was observed on values of the HOMO–LUMO energy gap and hyperpolarizability. The p-electronic delocalization extended over pyrazine, benzene and thiophene was examined in studying the NLO behavior. The chemical shifts of 1H NMR of all the synthesized compounds 4a–4n were calculated and compared with the experimental values.  相似文献   
979.
In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non-toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure-based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n-type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO-based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li-ion batteries, dye-sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO-based materials are constantly analyzed for their advantages in energy and life science applications.  相似文献   
980.
In this work, high aspect ratio zinc oxide nanowires are synthesized using templated one-step electrodeposition technique. Electrodeposition of the nanowires is done using a handcrafted electronic system. Nuclear track-etched polycarbonate membrane is used as a template to form the high aspect ratio nanowires. The result of X-ray diffraction and scanning electron microscopy shows that nanowires with a good crystallinity and an aspect ratio of more than 30 can be achieved in a suitable condition. The height of electrodeposited nanowires reaches to about 11 μm. Based on the obtained results, high aspect ratio ZnO nanowires can be formed using inexpensive electrodeposition setup with an acceptable quality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号