首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1491篇
  免费   76篇
  国内免费   28篇
化学   1189篇
晶体学   22篇
力学   62篇
数学   98篇
物理学   224篇
  2024年   10篇
  2023年   11篇
  2022年   71篇
  2021年   65篇
  2020年   75篇
  2019年   60篇
  2018年   73篇
  2017年   59篇
  2016年   104篇
  2015年   67篇
  2014年   89篇
  2013年   163篇
  2012年   120篇
  2011年   101篇
  2010年   86篇
  2009年   56篇
  2008年   70篇
  2007年   61篇
  2006年   42篇
  2005年   35篇
  2004年   22篇
  2003年   28篇
  2002年   22篇
  2001年   13篇
  2000年   10篇
  1999年   12篇
  1998年   4篇
  1997年   3篇
  1996年   6篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   7篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1977年   2篇
  1969年   1篇
排序方式: 共有1595条查询结果,搜索用时 15 毫秒
51.
The present study aims to characterize and predict models for antibacterial activity of a novel oligosaccharide from Streptomyces californics against Erwinia carotovora subsp. carotovora using an adaptive neuro-fuzzy inference system and an artificial neural network. The mathematical predication models were used to determine the optimal conditions to produce oligosaccharide and determine the relationship between the factors (pH, temperature, and time). The characteristics of the purified antibacterial agent were determined using ultraviolet spectroscopy (UV/Vis), infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H- and 13C-NMR), and mass spectrometry (MS). The best performances for the model were 39.45 and 35.16 recorded at epoch 1 for E. carotovora Erw5 and E. carotovora EMCC 1687, respectively. The coefficient (R2) of the training was more than 0.90. The highest antimicrobial production was recorded after 9 days at 25 °C and a pH of 6.2, at which more than 17 mm of the inhibition zone was obtained. The mass spectrum of antimicrobial agent (peak at R.T. = 3.433 of fraction 6) recorded two molecular ion peaks at m/z = 703.70 and m/z = 338.30, corresponding to molecular weights of 703.70 and 338.30 g/mol, respectively. The two molecular ion peaks matched well with the molecular formulas C29H53NO18 and C14H26O9, respectively, which were obtained from the elemental analysis result. A novel oligosaccharide from Streptomyces californics with potential activity against E. carotovora EMCC 1687 and E. carotovora Erw5 was successfully isolated, purified, and characterized.  相似文献   
52.
Polyimide‐silica (PI‐SiO2) hybrids were prepared from a novel polyimide (PI), derived from pyromellitic dianhydride (PMDA), 1,6‐bis(4‐aminophenoxy)hexane (synthesized) and 4,4′‐oxydianiline. SiO2 networks (5–30 wt%) were generated through sol–gel process using either tetraethylorthosilicate (TEOS) or a mixture of 3‐aminopropyltriethoxysilane‐PMDA‐based coupling oligomers (APA) and TEOS. Thin, free standing hybrid films were obtained from the respective mixtures by casting and curing processes. The hybrid films were characterized using Fourier transform infrared, 29Si nuclear magnetic resonance (NMR), field emission scanning electron microscopy (FE‐SEM), energy dispersive X‐ray spectrometry and atomic force microscopy (AFM) techniques. 29Si NMR results provide information about formation of organically modified silicate structures that were further substantiated by FE‐SEM and AFM micrographs. Contact angle measurements and thermogravimetric thermograms reveal that the addition of APA profoundly influences surface energy, interfacial tension, thermal stability and the residual char yield of modified hybrids in comparison to those obtained by mixing only TEOS. It was found that reduced particle size, efficient dispersion and improved interphase interactions were responsible for the eventual property enhancement. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
53.
Single‐unit‐cell Sn‐MFI, with the detectable Sn uniformly distributed and exclusively located at framework sites, is reported for the first time. The direct, single‐step, synthesis is based on repetitive branching caused by rotational intergrowths of single‐unit‐cell lamellae. The self‐pillared, meso‐ and microporous zeolite is an active and selective catalyst for sugar isomerization. High yields for the conversion of glucose into fructose and lactose to lactulose are demonstrated.  相似文献   
54.
This research paper comprises of the synthesis of polypyrrole (PPy)-Fe2O3 nanocomposites by employing the in situ chemical oxidative polymerization method. The concentration of the filler material was adjusted between 10–50 wt % of PPy. The synthesized nanocomposites were characterized by using X-ray diffraction (XRD). Magnetic analysis and DC electrical conductivity of the samples were carried out using vibrating sample magnetometer (VSM) and two probe DC conductivity method, point towards magnetically active and electrically conductive samples. The magnetic parameters under applied magnetic field demonstrated that the values of coercivity (H c ), saturation magnetization (M s ) and remanence (M r ) can be tailored by carefully controlling the amount of dopant material into the nanocomposites indicating their suitability for controllable switching devices and microwave absorption applications. The DC electrical conductivity showed an increase up to 20 wt % of filler material and thereafter a decrease in the conductivity of nanocomposites with increase in filler content is observed. Thermogravimetric analysis (TGA) showed an increase in thermal stability with an increase in ferrite content in nanocomposites.  相似文献   
55.
In recent decades, there has been an increasing trend toward the technical development of efficient energy system assessment tools owing to the growing energy demand and subsequent greenhouse gas emissions. Accordingly, in this paper, a comprehensive emergy-based exergoeconomic (emergoeconomic) method has been developed to study the biomass combustion waste heat recovery organic Rankine cycle (BCWHR-ORC), taking into account thermodynamics, economics, and sustainability aspects. To this end, the system was formulated in Engineering Equation Solver (EES) software, and then the exergy, exergoeconomic, and emergoeconomic analyses were conducted accordingly. The exergy analysis results revealed that the evaporator unit with 55.05 kilowatts and the turbine with 89.57% had the highest exergy destruction rate and exergy efficiency, respectively. Based on the exergoeconomic analysis, the cost per exergy unit (c), and the cost rate (C˙) of the output power of the system were calculated to be 24.13 USD/GJ and 14.19 USD/h, respectively. Next, by applying the emergoeconomic approach, the monetary emergy content of the system components and the flows were calculated to evaluate the system’s sustainability. Accordingly, the turbine was found to have the highest monetary emergy rate of capital investment, equal to 5.43×1012 sej/h, and an output power monetary emergy of 4.77×104 sej/J. Finally, a sensitivity analysis was performed to investigate the system’s overall performance characteristics from an exergoeconomic perspective, regarding the changes in the transformation coefficients (specific monetary emergy).  相似文献   
56.
Sodium bromide efficiently catalyses the regioselective cleavage of oxiranes with chlorotrimethylsilane to the corresponding O-silylated chlorohydrins in excellent yields.  相似文献   
57.
Grazing‐incidence X‐ray scattering (GIXS) is widely used to analyze the crystallinity and nanoscale structure in thin polymer films. However, ionizing radiation will generate free radicals that initiate crosslinking and/or chain scission, and structural damage will impact the ordering kinetics, thermodynamics, and crystallinity in many polymers. We report a simple methodology to screen for beam damage that is based on lithographic principles: films are exposed to patterns of X‐ray radiation, and changes in polymer structure are revealed by immersing the film in a solvent that dissolves the shortest chains. The experiments are implemented with high throughput using the standard beam line instrumentation and a typical GIXS configuration. The extent of damage (at a fixed radiation dose) depends on a range of intrinsic material properties and experimental variables, including the polymer chemistry and molecular weight, exposure environment, film thickness, and angle of incidence. The solubility switch for common polymers is detected within 10–60 s at ambient temperature, and we verified that this first indication of damage corresponds with the onset of network formation in glassy polystyrene and a loss of crystallinity in polyalkylthiophenes. Therefore, grazing‐incidence X‐ray “patterning” offers an efficient approach to determine the appropriate data acquisition times for any GIXS experiment. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1074–1086  相似文献   
58.
59.
A simple, highly sensitive, accurate and selective method for the determination of trace amounts of Ni2+ ions in water samples is proposed. The method is based on the separation and preconcentration of Ni2+ on an octadecyl-bonded silica (ODBS) membrane disk modified by a recently synthesized Schiff’s base N,N′-bis (3-methylsalicylidene) ortho phenylene diamine (MSOPD) at pH 7. The synthesis of this extractant ligand is also described. The retained nickel on the membrane was eluted with 2×5 ml 0.5 M HNO3 and measured by flame atomic absorption spectrometry (FAAS) at 232.0 nm. The extraction efficiency and the influence of the type and least amount of eluent for the stripping of Ni2+ from the disks, pH, flow rates of sample solution and eluent, amount of MSOPD, effect of other ions, and breakthrough volume were evaluated. The maximum capacity of the membrane disks modified by 3 mg of MSOPD was found to be 146±4 μg Ni2+. The 3σ limit of detection of the method was 30 ng per 1000 ml and also an enrichment factor of 250 was obtained. The proposed method has been applied to the determination of nickel in several water samples with satisfactory results.  相似文献   
60.
The morphology of a quaternary blend containing a diglycidyl ether of bisphenol-A (DGEBA), a thermoplastic modifier (PMMA), a phase-separating curing agent (diaminodiphenylmethane, DDM), and a non-phase-separating curing agent (methylenebis(3-chloro-2,6-diethylaniline, MCDEA) was studied as a function of volume fraction of the thermoplastic modifier and fractional concentration of the curing agents in their mixture. It was found that using mixtures of curing agents a co-continuous morphology could be obtained at PMMA concentrations as low as 2.5 volume percent. Using FTIR spectroscopy it was proved that specific interactions are present between PMMA and individual amine curing agents. On the other hand, there was no detectable specific interaction between PMMA and DGEBA. By analyzing the micro-indentation hardness data of the cryo-fractured samples and putting forward the intrinsic hardness concept, it was proposed that the co-continuous morphology is inherently more effective than the other morphologies in changing the mechanical properties of the above-mentioned multi-component blends.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号