首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1391篇
  免费   82篇
  国内免费   28篇
化学   1098篇
晶体学   21篇
力学   57篇
数学   99篇
物理学   226篇
  2024年   7篇
  2023年   11篇
  2022年   55篇
  2021年   64篇
  2020年   72篇
  2019年   55篇
  2018年   69篇
  2017年   58篇
  2016年   98篇
  2015年   65篇
  2014年   85篇
  2013年   154篇
  2012年   109篇
  2011年   94篇
  2010年   77篇
  2009年   49篇
  2008年   64篇
  2007年   54篇
  2006年   38篇
  2005年   32篇
  2004年   20篇
  2003年   23篇
  2002年   24篇
  2001年   12篇
  2000年   16篇
  1999年   13篇
  1998年   7篇
  1997年   1篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1993年   10篇
  1992年   5篇
  1991年   7篇
  1990年   1篇
  1989年   7篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1977年   2篇
  1969年   2篇
排序方式: 共有1501条查询结果,搜索用时 328 毫秒
91.
Journal of Thermal Analysis and Calorimetry - In situ composites are today being considered for industrial use, owing to the fewer production steps involved, lower production cost, and better...  相似文献   
92.
Contamination of the biosphere by heavy metals has been rising, due to accelerated anthropogenic activities, and is nowadays, a matter of serious global concern. Removal of such inorganic pollutants from aquatic environments via biological processes has earned great popularity, for its cost-effectiveness and high efficiency, compared to conventional physicochemical methods. Among candidate organisms, microalgae offer several competitive advantages; phycoremediation has even been claimed as the next generation of wastewater treatment technologies. Furthermore, integration of microalgae-mediated wastewater treatment and bioenergy production adds favorably to the economic feasibility of the former process—with energy security coming along with environmental sustainability. However, poor biomass productivity under abiotic stress conditions has hindered the large-scale deployment of microalgae. Recent advances encompassing molecular tools for genome editing, together with the advent of multiomics technologies and computational approaches, have permitted the design of tailor-made microalgal cell factories, which encompass multiple beneficial traits, while circumventing those associated with the bioaccumulation of unfavorable chemicals. Previous studies unfolded several routes through which genetic engineering-mediated improvements appear feasible (encompassing sequestration/uptake capacity and specificity for heavy metals); they can be categorized as metal transportation, chelation, or biotransformation, with regulation of metal- and oxidative stress response, as well as cell surface engineering playing a crucial role therein. This review covers the state-of-the-art metal stress mitigation mechanisms prevalent in microalgae, and discusses putative and tested metabolic engineering approaches, aimed at further improvement of those biological processes. Finally, current research gaps and future prospects arising from use of transgenic microalgae for heavy metal phycoremediation are reviewed.  相似文献   
93.
Dracaena reflexa, a traditionally significant medicinal plant, has not been extensively explored before for its phytochemical and biological potential. The present study was conducted to evaluate the bioactive phytochemicals and in vitro biological activities of D. reflexa, and perform in silico molecular docking validation of D. reflexa. The bioactive phytochemicals were assessed by preliminary phytochemical testing, total bioactive contents, and GC-MS analysis. For biological evaluation, the antioxidant (DPPH, ABTS, CUPRAC, and ABTS), antibacterial, thrombolytic, and enzyme inhibition (tyrosinase and cholinesterase enzymes) potential were determined. The highest level of total phenolic contents (92.72 ± 0.79 mg GAE/g extract) was found in the n-butanol fraction while the maximum total flavonoid content (110 ± 0.83 mg QE/g extract) was observed in methanolic extract. The results showed that n-butanol fraction exhibited very significant tyrosinase inhibition activity (73.46 ± 0.80) and acetylcholinesterase inhibition activity (64.06 ± 2.65%) as compared to other fractions and comparable to the standard compounds (kojic acid and galantamine). The methanolic extract was considered to have moderate butyrylcholinesterase inhibition activity (50.97 ± 063) as compared to the standard compound galantamine (53.671 ± 0.97%). The GC-MS analysis of the n-hexane fraction resulted in the tentative identification of 120 bioactive phytochemicals. Furthermore, the major compounds as identified by GC-MS were analyzed using in silico molecular docking studies to determine the binding affinity between the ligands and the enzymes (tyrosinase, acetylcholinesterase, and butyrylcholinesterase enzymes). The results of this study suggest that Dracaena reflexa has unquestionable pharmaceutical importance and it should be further explored for the isolation of secondary metabolites that can be employed for the treatment of different diseases.  相似文献   
94.
Karimian  Saeed  Jahanbin  Zahra 《Meccanica》2020,55(6):1263-1294

In the present research, a new comprehensive model of a flexible articulated flapping wing robot using the bond graph approach is presented. The flapping kinematics of a two-section wing is introduced via the bond graph based approach on a hybrid mechanism providing amplitude and phase characteristics. The aerodynamic quasi-steady approach equipped with stall correlation is utilized according to the reduced flapping frequency and the angle of attack ranges. The local flow velocity and the wing position are calculated in both wing and body coordinates taking into account rotation and translation of the wing different parts. Estimation of the effective angle of attack is performed by calculating the instantaneous torque distribution on both wing sections. Aeroelastic modeling is employed in which the wing structure is assumed as an elastic Euler–Bernoulli beam at the leading edge with three linear torsional modes. In this novel integrated bond graph model, computation of the performance indices including the average lift and thrust, consumed and produced powers by flapping and mechanical efficiency are presented. Due to existence of the numerous geometric and kinematic parameters in articulated flexible flapping wing, such a model is essential for design and optimization. Consequently, an example of a typical parametric study and the results validation are carried out. It is indicated that the sensitivity of the bird performance to relative change in design variables would increase for out of phase flapping, second part stiffness, flapping amplitude, frequency and velocity respectively. It is interesting that by employing the reverse-phase flapping which is possible only via articulated wings, the maximum efficiency could be achieved. In addition, it is shown that adjusting the wing torsional stiffness is a crucial item in design of passive flapping robots. The key advantage of the two-section flapping wing is depicted as the controlling capability of the angle of attack in the outer part of the wing. Finally, the improved version of the bird is being addressed by approximately 15% progress in propulsive efficiency.

  相似文献   
95.
Faisal  Muhammad  Saeed  Aamer  Shahzad  Danish  Dar  Parsa  Larik  Fayaz Ali 《Molecular diversity》2020,24(2):571-592
Molecular Diversity - Aldehydes and ketones are parts of millions of compounds and are important classes of chemicals which serve as important precursors for the synthesis of library of compounds....  相似文献   
96.
Germanane (GeH), a germanium analogue of graphane, has recently attracted considerable interest because its remarkable combination of properties makes it an extremely suitable candidate to be used as 2D material for field effect devices, photovoltaics, and photocatalysis. Up to now, the synthesis of GeH has been conducted by substituting Ca by H in a β‐CaGe2 layered Zintl phase through topochemical deintercalation in aqueous HCl. This reaction is generally slow and takes place over 6 to 14 days. The new and facile protocol presented here allows to synthesize GeH at room temperature in a significantly shorter time (a few minutes), which renders this method highly attractive for technological applications. The GeH produced with this method is highly pure and has a band gap (Eg) close to 1.4 eV, a lower value than that reported for germanane synthesized using HCl, which is promising for incorporation of GeH in solar cells.  相似文献   
97.
This research paper comprises of the synthesis of polypyrrole (PPy)-Fe2O3 nanocomposites by employing the in situ chemical oxidative polymerization method. The concentration of the filler material was adjusted between 10–50 wt % of PPy. The synthesized nanocomposites were characterized by using X-ray diffraction (XRD). Magnetic analysis and DC electrical conductivity of the samples were carried out using vibrating sample magnetometer (VSM) and two probe DC conductivity method, point towards magnetically active and electrically conductive samples. The magnetic parameters under applied magnetic field demonstrated that the values of coercivity (H c ), saturation magnetization (M s ) and remanence (M r ) can be tailored by carefully controlling the amount of dopant material into the nanocomposites indicating their suitability for controllable switching devices and microwave absorption applications. The DC electrical conductivity showed an increase up to 20 wt % of filler material and thereafter a decrease in the conductivity of nanocomposites with increase in filler content is observed. Thermogravimetric analysis (TGA) showed an increase in thermal stability with an increase in ferrite content in nanocomposites.  相似文献   
98.
Single‐unit‐cell Sn‐MFI, with the detectable Sn uniformly distributed and exclusively located at framework sites, is reported for the first time. The direct, single‐step, synthesis is based on repetitive branching caused by rotational intergrowths of single‐unit‐cell lamellae. The self‐pillared, meso‐ and microporous zeolite is an active and selective catalyst for sugar isomerization. High yields for the conversion of glucose into fructose and lactose to lactulose are demonstrated.  相似文献   
99.
Polyimide‐silica (PI‐SiO2) hybrids were prepared from a novel polyimide (PI), derived from pyromellitic dianhydride (PMDA), 1,6‐bis(4‐aminophenoxy)hexane (synthesized) and 4,4′‐oxydianiline. SiO2 networks (5–30 wt%) were generated through sol–gel process using either tetraethylorthosilicate (TEOS) or a mixture of 3‐aminopropyltriethoxysilane‐PMDA‐based coupling oligomers (APA) and TEOS. Thin, free standing hybrid films were obtained from the respective mixtures by casting and curing processes. The hybrid films were characterized using Fourier transform infrared, 29Si nuclear magnetic resonance (NMR), field emission scanning electron microscopy (FE‐SEM), energy dispersive X‐ray spectrometry and atomic force microscopy (AFM) techniques. 29Si NMR results provide information about formation of organically modified silicate structures that were further substantiated by FE‐SEM and AFM micrographs. Contact angle measurements and thermogravimetric thermograms reveal that the addition of APA profoundly influences surface energy, interfacial tension, thermal stability and the residual char yield of modified hybrids in comparison to those obtained by mixing only TEOS. It was found that reduced particle size, efficient dispersion and improved interphase interactions were responsible for the eventual property enhancement. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
100.
Activated carbons (AC) have been long recognized as prominent absorbents in industries and feature numerous applications in preventing or absorbing the harmful gases and liquids and could be employed for filtration and remediation or even reutilization of chemicals. In order to investigate the capacity of AC in reducing the absorption of heavy metals (HM) including lead (Pb) and cadmium (Cd) and dual complex (Pb?×?Cd) by spinach, a factorial experiment in a completely randomized design with three replications on a pot trial was conducted. Three factors including five levels of AC 0, 5000, 10000, 15000, 20000?mg/kg soil, one concentration level of Pb 4,000?mg/kg soil and one concentration level of cadmium Cd 8?mg/kg soil were tested. The index of heavy metal concentration was calculated in leaf, stem and root and their corresponding dry weights. Results illustrated that in contaminated soils, plants with AC exhibited a superior reduction of absorption of HM vis-à-vis the plants without AC. The foremost result regarding the impact of AC on reducing the concentration of Pb and Cd was observed in 20,000 level of AC. This reveals that AC declined the soil contamination and lessened the accumulation of HM into the shoots and roots. Results suggest that the application of AC may be an eligible solution for decreasing the translocation of HM into the plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号