首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45572篇
  免费   15692篇
  国内免费   57篇
化学   55437篇
晶体学   64篇
力学   2056篇
数学   2648篇
物理学   1116篇
  2024年   373篇
  2023年   4086篇
  2022年   1450篇
  2021年   2476篇
  2020年   4629篇
  2019年   2314篇
  2018年   2286篇
  2017年   607篇
  2016年   5584篇
  2015年   5528篇
  2014年   4950篇
  2013年   5150篇
  2012年   3217篇
  2011年   1033篇
  2010年   3409篇
  2009年   3354篇
  2008年   1035篇
  2007年   748篇
  2006年   110篇
  1997年   80篇
  1995年   139篇
  1994年   83篇
  1993年   210篇
  1992年   96篇
  1988年   114篇
  1987年   98篇
  1986年   79篇
  1985年   97篇
  1984年   105篇
  1983年   101篇
  1982年   127篇
  1981年   154篇
  1980年   194篇
  1979年   184篇
  1978年   189篇
  1977年   309篇
  1976年   361篇
  1975年   456篇
  1974年   471篇
  1973年   284篇
  1972年   369篇
  1971年   355篇
  1970年   541篇
  1969年   413篇
  1968年   470篇
  1967年   114篇
  1966年   89篇
  1965年   83篇
  1963年   112篇
  1962年   77篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Carbon monoxide (CO) is proposed as an active pharmaceutical agent with promising pharmaceutical prospects, as it has been involved in multifaceted modulation of diverse physiological and pathological processes. However, questions remain for therapeutic application of inhaled CO attributed to the inherent great affinity between CO and hemoglobin. Therefore, a robust platform with the function of CO transport and controllable release, depending on the local status of an organism, is of prominent significance for effectively avoiding the side effects of CO inhalation and optimizing the biological regulation function of CO. Utilizing the oxidative stress biomarker H2O2 as a trigger and combining with photo‐control, a two‐photon H2O2‐activated CO photoreleaser, FB, featuring highly sensitive and specific H2O2 sensing and photocontrollable CO release, was developed and the vasodilation effect of CO against angiotensin II was demonstrated.  相似文献   
942.
The first visible‐light‐mediated synthesis of trifluoromethylselenolated arenes under metal‐free conditions is reported. The use of an organic photocatalyst enables the trifluoromethylselenolation of arene diazonium salts using the shelf‐stable reagent trifluoromethyl tolueneselenosulfonate at room temperature. The reaction does not require the presence of any additives and shows high functional‐group tolerance, covering a very broad range of starting materials. Mechanistic investigations, including EPR spectroscopy, luminescence investigations, and cyclic voltammetry allow rationalization of the reaction mechanism.  相似文献   
943.
Ultrathin two‐dimensional (2D) nanostructures have attracted increasing research interest for energy storage and conversion. However, tackling the key problem of lattice mismatch inducing the instability of ulreathin nanostructures during phase transformations is still a critical challenge. Herein, we describe a facile and scalable strategy for the growth of ultrathin nickel phosphide (Ni2P) nanosheets (NSs) with exposed (001) facets. We show that single‐layer functionalized graphene with residual oxygen‐containing groups and a large lateral size contributes to reducing the lattice strain during phosphorization. The resulting nanostructure exhibits remarkable hydrogen evolution activity and good stability under alkaline conditions.  相似文献   
944.
Reported is a modular one‐step three‐component synthesis of tetrahydroisoquinolines using a Catellani strategy. This process exploits aziridines as the alkylating reagents, through palladium/norbornene cooperative catalysis, to enable a Catellani/Heck/aza‐Michael addition cascade. This mild, chemoselective, and scalable protocol has broad substrate scope (43 examples, up to 90 % yield). The most striking feature of this protocol is the excellent regioselectivity and diastereoselectivity observed for 2‐alkyl‐ and 2‐aryl‐substituted aziridines to access 1,3‐cis‐substituted and 1,4‐cis‐substituted tetrahydroisoquinolines, respectively. Moreover, this is a versatile process with high step and atom economy.  相似文献   
945.
The synthesis of uncommon bifunctional allylic derivatives bearing a silane and an alcohol within the same allylic framework is reported. This method relies on the coupling of hydrosilanes with substituted and functionalized cyclopropenes, which deliver the allyl fragment. Rhodium(II) catalysts provide regioselective access to vinyl carbene intermediates, which easily undergo Si?H bond insertions. The transformation occurs with complete atom economy and shows a remarkably broad scope, including a intramolecular version for the synthesis of cyclic O?Si‐linked compounds as well as the synthesis of the corresponding allyl amines.  相似文献   
946.
The mechanism of the Ni0‐catalyzed reductive carboxylation reaction of C(sp2)?O and C(sp3)?O bonds in aromatic esters with CO2 to access valuable carboxylic acids was comprehensively studied by using DFT calculations. Computational results revealed that this transformation was composed of several key steps: C?O bond cleavage, reductive elimination, and/or CO2 insertion. Of these steps, C?O bond cleavage was found to be rate‐determining, and it occurred through either oxidative addition to form a NiII intermediate, or a radical pathway that involved a bimetallic species to generate two NiI species through homolytic dissociation of the C?O bond. DFT calculations revealed that the oxidative addition step was preferred in the reductive carboxylation reactions of C(sp2)?O and C(sp3)?O bonds in substrates with extended π systems. In contrast, oxidative addition was highly disfavored when traceless directing groups were involved in the reductive coupling of substrates without extended π systems. In such cases, the presence of traceless directing groups allowed for docking of a second Ni0 catalyst, and the reactions proceed through a bimetallic radical pathway, rather than through concerted oxidative addition, to afford two NiI species both kinetically and thermodynamically. These theoretical mechanistic insights into the reductive carboxylation reactions of C?O bonds were also employed to investigate several experimentally observed phenomena, including ligand‐dependent reactivity and site‐selectivity.  相似文献   
947.
Green and efficient procedures are essential for the chemoselective hydrogenation of functionalized nitroarenes to form industrially important anilines. Herein, it is shown that visible‐light‐driven, chemoselective hydrogenation of functionalized nitroarenes with groups sensitive to forming anilines can be achieved in good to excellent yields (82–100 %) in water under relatively mild conditions and catalyzed by low‐cost and recyclable graphitic carbon nitride. The process is also applicable to gram‐scale reaction, with a yield of aniline of 86 %. A study of the mechanism reveals that visible‐light‐induced electrons are responsible for the hydrogenation reactions, and thermal energy can also promote the photocatalytic activity. A study of the kinetics shows that this reaction possibly occurs through one‐step hydrogenation or stepwise condensation routes. A wide range of applications can be expected for this green, efficient, and highly selective photocatalysis system in reduction reactions for the synthesis of fine chemicals.  相似文献   
948.
Novel guanidinium ionic liquid‐grafted rigid poly(p‐phenylene) (PPPIL) microspheres have been developed for metal scavenging and catalysis. The noble‐metal nanoparticles supported on the microspheres surface can be used as efficient heterogeneous catalysts. The combination of nanoparticles and ionic liquid fragments on the microsphere surfaces enhance the activity and durability of the catalyst. The PPPIL ? Pd0 catalyst has been tested in the Suzuki cross‐coupling reaction, and exhibits much higher catalytic activity than Pd catalysts supported on porous polymer matrices. The PPPIL ? Pd0 catalyst can be recycled at least for nine runs without any significant loss of activity. The present approach may, therefore, have potential applications in transition‐metal‐nanocatalyzed reactions.  相似文献   
949.
New ternary rare earth metal boride carbides with compositions close to RE10B9C10 (RE = Gd, Tb) were prepared from the elements by melting around 1800 K followed by annealing in silica tubes at 1270 K for one month. The crystal structure of the terbium compound was solved by single‐crystal X‐ray diffraction. It crystallizes in a new structure type in the monoclinic space group P21/c, a = 7.937(1), b = 23.786(2), c = 11.172(1) Å, β = 133.74(1)°, Z = 4, R1 = 0.045 (wR2 = 0.11) for 5713 reflections with Io > 2σ(Io). In the structure BC2 units and single carbon atoms are attached to a zigzag boron chain forming the unprecedented B18C18 branching unit with a B–B distance of 2.42(2) Å between these units. In addition isolated carbon atoms occupy the centres of elongated octahedra formed by rare earth metal atoms. Disorder in the terbium position together with anomalous displacement ellipsoids for carbon atoms except of those in the BC2 fragments can be rationalized in terms of a slight deviation in stoichiometry, Tb10B9+xC10–x (x ≈? 0.2). The terbium compound is ferromagnetic below TC ≈? 45 K. Due to the presence of moderately narrow domain walls the magneto‐crystalline energy is small.  相似文献   
950.
The novel heterospin complex [Ni2(PhCOO)4(NITpPy)2]·2CH3CN ( 1 ) was synthesized by the reaction of nickel benzoate and 2‐(4‐pyridyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (NITpPy) in acetonitrile and dichloromethane solutions. The X‐ray structure determination shows that complex 1 consists of a symmetrical dimeric NiII benzoate paddle‐wheel core and pyridyl nitrogen atoms of radical ligands at the apical position, in addition, the temperature (2–300K) dependent magnetic susceptibility measurements indicate that 1 has antiferromagnetic behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号