首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   14篇
  国内免费   1篇
化学   481篇
晶体学   9篇
力学   5篇
数学   21篇
物理学   104篇
  2022年   4篇
  2021年   8篇
  2020年   10篇
  2019年   16篇
  2018年   7篇
  2017年   4篇
  2016年   14篇
  2015年   10篇
  2014年   14篇
  2013年   26篇
  2012年   23篇
  2011年   48篇
  2010年   15篇
  2009年   12篇
  2008年   35篇
  2007年   38篇
  2006年   46篇
  2005年   38篇
  2004年   29篇
  2003年   28篇
  2002年   15篇
  2001年   15篇
  2000年   11篇
  1999年   8篇
  1998年   9篇
  1996年   5篇
  1995年   5篇
  1994年   6篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   10篇
  1988年   9篇
  1987年   17篇
  1986年   4篇
  1985年   8篇
  1984年   9篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1977年   3篇
  1975年   2篇
  1973年   2篇
  1970年   2篇
  1968年   3篇
  1966年   4篇
  1965年   3篇
排序方式: 共有620条查询结果,搜索用时 15 毫秒
41.
42.
The enzymatic transformation into an oligomer was carried out with the objective of developing the chemical recycling of bacterial polyesters. Poly(R-3-hydroxyalkanoate)s (PHAs), such as poly[(R-3-hydroxybutyrate)-co-12%(R-3-hydroxyhexanoate)] and poly[(R-3-hydroxybutyrate)-co-12%(R-3-hydroxyvalerate)], were degraded by granulated Candida antarctica lipase B immobilized on hydrophilic silica (lipase GCA) in a diluted organic solvent at 70 degrees C. The degradation products were cyclic oligomers having a molecular weight of a few hundreds. The obtained cyclic oligomer was readily repolymerized by the same lipase (lipase GCA) to produce the corresponding polyester in a concentrated solution. The cyclic oligomer was copolymerized with epsilon-caprolactone using lipase to produce the corresponding terpolymers having an Mw of 21,000. This is the first example of the enzymatic chemical recycling of bacterial PHAs using lipase. Poly(R-3-hydroxybutyrate) [P(3HB)] was also degraded into the linear-type R-3HB monomer to trimer by P(3HB)-depolymerase (PHBDP) in phosphate buffer at 37 degrees C. The degradation using PHBDP required a longer reaction time compared with the lipase-catalyzed degradation in organic solvent. The monomer composition of the oligomer depended on the origin of the PHBDP. The R-3HB monomer was predominately produced by PHBDP from Pseudomonas stutzeri, while the R-3HB dimer was produced by PHBDP from Alcaligenes faecalis T1. Repolymerization of these oligomers by lipase in concentrated organic solvent produced a relatively low-molecular-weight P(3HB) (e.g., Mw=2,000). Degradation of P(3HB) by lipase in organic solvent into repolymerizable cyclic oligomer and degradation of P(3HB) by PHBDP in buffer into hydroxy acid type R-3HB dimer.  相似文献   
43.
Fabrication of controlled peptide nanofibers with homogeneous morphology has been demonstrated. Amphiphilic beta-sheet peptides were designed as sequences of Pro-Lys-X(1)-Lys-X(2)-X(2)-Glu-X(1)-Glu-Pro. X(1) and X(2) were hydrophobic residues selected from Phe, Ile, Val, or Tyr. The peptide FI (X(1)=Phe; X(2)=Ile) self-assemble into straight fibers with 80-120 nm widths and clear edges, as examined by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The fiber formation is performed in a hierarchical manner: beta-sheet peptides form a protofibril, the protofibrils assemble side-by-side to form a ribbon, and the ribbons then coil in a left-handed fashion to make up a straight fiber. These type of fibers are formed from peptides possessing hydrophobic aromatic Phe residue(s). Furthermore, a peptide with Ala residues at both N and C termini does not form fibers (100 nm scale) with clear edges; this causes random aggregation of small pieces of fibers instead. Thus, the combination of unique amphiphilic sequences and terminal Pro residues determine the fiber morphology.  相似文献   
44.
The Zn K-edge extended X-ray absorption fine structure (EXAFS) spectra, of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae have been recorded in the presence of one or two equivalents of Zn(II) (i.e. [Zn_(DapE)] and [ZnZn(DapE)]). The Fourier transforms of the Zn EXAFS are dominated by a peak at ca. 2.0 A, which can be fit for both [Zn_(DapE)] and [ZnZn(DapE)], assuming ca. 5 (N,O) scatterers at 1.96 and 1.98 A, respectively. A second-shell feature at ca. 3.34 A appears in the [ZnZn(DapE)] EXAFS spectrum but is significantly diminished in [Zn_(DapE)]. These data show that DapE contains a dinuclear Zn(II) active site. Since no X-ray crystallographic data are available for any DapE enzyme, these data provide the first glimpse at the active site of DapE enzymes. In addition, the EXAFS data for DapE incubated with two competitive inhibitors, 2-carboxyethylphosphonic acid and 5-mercaptopentanoic acid, are also presented.  相似文献   
45.
Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) catalyzes the isomerization of PGH(2) to PGD(2) and is involved in the regulation of pain and of nonrapid eye movement sleep and the differentiation of male genital organs and adipocytes, etc. L-PGDS is secreted into various body fluids and binds various lipophilic compounds with high affinities, acting also as an extracellular transporter. Mouse L-PGDS with a C65A mutation was previously crystallized with citrate or malonate as a precipitant, and the X-ray crystallographic structure was determined at 2.0 ? resolution. To obtain high-quality crystals, we tried, unsuccessfully, to crystallize the C65A mutant in microgravity under the same conditions used in the previous study. After further purifying the protein and changing the precipitant to polyethylene glycol (PEG) 8000, high-quality crystals were grown in microgravity. The precipitant solution was 40% (w/v) PEG 8000, 100 mM sodium chloride, and 100 mM HEPES-NaOH (pH 7.0). Crystals grew on board the International Space Station for 11 weeks in 2007, yielding single crystals of the wild-type L-PGDS and the C65A mutant, both of which diffracted at around 1.0 ? resolution. The crystal quality was markedly improved through the use of a high-viscosity precipitant solution in microgravity, in combination with the use of a highly purified protein.  相似文献   
46.
Four new sulfonated serinol derivatives, siladenoserinols M–P (14), were isolated from a tunicate of the family Didemnidae collected in Indonesia. Their chemical structures were elucidated by the interpretation of NMR and mass spectroscopic data. Two of them (2 and 4) were revealed to be disulfonate serinol derivatives, and the others were monosulfonates. Siladenoserinols A (5) and B (6), which we previously isolated from the same tunicate, inhibited the p53–Hdm2 interaction with an IC50 value of 2.0?μM. However, 14 did not inhibit the activity. The result suggested that the acetyl group in the bicyclic ketal unit and/or the glycerophospholipid moiety in 5 and 6 were responsible for the inhibition of the p53–Hdm2 interaction.  相似文献   
47.
48.
49.
Titanium dioxide (TiO2) films were irradiated with a femtosecond laser to alter their photoconductive properties. The laser wavelength and pulse duration were 775 nm and 150 fs, respectively. The TiO2 films irradiated with the femtosecond laser were darkened without changing the topography of the TiO2 film surface. The electrical resistances of the films as a function of time were measured under visible-light illumination. The transient electrical resistances decreased as time was increased after turning on the light. There were two stages in the reduction process of the electrical resistance.  相似文献   
50.
A novel macro/nano blended nonwoven with excellent physical properties was prepared by electrospinning polyurethane (PU) nanofibers onto the surface of ramie webs under different weight ratios of N,N‐dimethylacetamide (DMAc)/acetone cosolvents. The ratio of cosolvents has a significant influence on the morphology, tensile properties, resilience, and thermal properties of the resultant samples. Bead‐free and fine interconnected nanofibers were obtained with an increase of acetone content up to 60 wt%. The total physical properties of the blended nonwovens were optimal for a DMAc/acetone ratio of 40/60, in which the tensile load at break, extension at break and Young's modulus were 441, 54, and 256% higher than that of pure ramie web, respectively. The resilience of the blended nonwovens was ~20% higher than that of nonblended ramie web. The significant improvement of physical properties may be due to the good connection between PU nanofiber membranes and ramie webs and the molecular chain structure differences, interconnected structural differences, and high extensibility of PU nanofibers, according to the results of crystallization by differential scanning calorimetry (DSC) and morphological observation by scanning electronic microscopy (SEM). © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1–14, 2010  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号