首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   1篇
  国内免费   1篇
化学   30篇
数学   1篇
物理学   9篇
  2023年   1篇
  2019年   4篇
  2018年   1篇
  2016年   4篇
  2014年   2篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2007年   3篇
  2006年   2篇
  2003年   1篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1997年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有40条查询结果,搜索用时 161 毫秒
21.
Ti(2)(Ti(0.16)Ni(0.43)Al(0.41))(3) is a novel compound (labeled as τ(6)) in the Ti-rich region of the Ti-Ni-Al system in a limited temperature range 870 < T < 980 °C. The structure of τ(6)-Ti(2)(Ti,Ni,Al)(3) was solved from a combined analysis of X-ray single crystal and neutron powder diffracton data (space group C2/m, a = 1.85383(7) nm, b = 0.49970(2) nm, c = 0.81511(3) nm, and β = 99.597(3)°). τ(6)-Ti(2)(Ti,Ni,Al)(3) as a variant of the V(2)(Co(0.57)Si(0.43))(3)-type is a combination of slabs of the MgZn(2)-Laves type and slabs of the Zr(4)Al(3)-type forming a tetrahedrally close-packed Frank-Kasper structure with pentagon-triangle main layers. Titanium atoms occupy the vanadium sites, but Ti/Ni/Al atoms randomly share the (Co/Si) sites of V(2)(Co(0.57)Si(0.43))(3). Although τ(6) shows a random replacement on 6 of the 11 atom sites, it has no significant homogeneity range (~1 at. %). The composition of τ(6) changes slightly with temperature. DSC/DTA runs (1 K/min) were not sufficient to define proper reaction temperatures due to slow reaction kinetics. Therefore, phase equilibria related to τ(6) were derived from X-ray powder diffraction in combination with EPMA on alloys, which were annealed at carefully set temperatures and quenched. τ(6) forms from a peritectoid reaction η-(Ti,Al)(2)Ni + τ(3) + α(2) ? τ(6) at 980 °C and decomposes in a eutectoid reaction τ(6) ? η + τ(4) + α(2) at 870 °C. Both reactions involve the η-(Ti,Al)(2)Ni phase, for which the atom distribution was derived from X-ray single crystal intensity data, revealing Ti/Al randomly sharing the 48f- and 16c-positions in space group Fd3?m (Ti(2)Ni-type, a = 1.12543(3) nm). There was no residual electron density at the octahedral centers of the crystal structure ruling out impurity stabilization. Phase equilibria involving the τ(6) phase have been established for various temperatures (T = 865, 900, 925, 950, 975 °C, and subsolidus). The reaction isotherms concerning the τ(6) phase have been established and are summarized in a Schultz-Scheil diagram.  相似文献   
22.
Single crystals of the Y5Cu5Mg8, Y5Cu5Mg13, Y5Cu5Mg16 and YCuMg4 compounds were synthesized by heating in a resistance furnace evacuated quartz vials containing Ta-crucibles with element pieces. SEM-EDXS analyses were performed to check phases composition. The structures were refined from X-ray single crystal diffraction data. Y5Cu5Mg8, Y5Cu5Mg13 and Y5Cu5Mg16 represent new structure types: Y5Cu5Mg8 – orthorhombic, Pmma, oP36, a = 2.63723(15), b = 0.40066(2), c = 0.74115(6) nm, Z = 2, wR2 = 0.0597, 939 F2 values, 60 variables; Y5Cu5Mg13 – orthorhombic, Cmcm, oS92, a = 0.40973(2), b = 1.92794(8), c = 2.57907(11) nm, Z = 4, wR2 = 0.1134, 1208 F2 values, 75 variables; Y5Cu5Mg16 – orthorhombic, Cmcm, oS104, a = 0.41360(8), b = 1.9239(4), c = 2.9086(6) nm, Z = 4, wR2 = 0.0760, 1383 F2 values, 84 variables. YCuMg4 crystallizes in the TbCuMg4 structure type (Cmmm, oS48, a = 1.35754(4), b = 2.03153(6), c = 0.39060(1) nm, Z = 8, wR2 = 0.0401, 661 F2 values, 45 variables). The crystal chemistry of these two-layer structures is comparatively discussed. Majority of novel compounds were characterized as members of inhomogeneous 2D intergrowth structure series of R5M5X5, X4 (Mg4) and empty Mg octahedra building blocks of general formula R5kM5kX5k + 4l + m. The common pentagonal prism derivative structural fragments around the most electropositive yttrium atoms were outlined in all these intermetallics.  相似文献   
23.
Advances in theory that explain the magnetic behavior as function of temperature for two phase nanocrystalline soft magnetic materials are presented. The theory developed is based on the well known random anisotropy model, which includes the crystalline exchange stiffness and anisotropy energies in both amorphous and crystalline phases. The phenomenological behavior of the coercivity was obtained in the temperature range between the amorphous phase Curie temperature and the crystalline phase one.  相似文献   
24.
25.
Phase relations in the ternary systems Ce-M-Sb (M=Si, Ge, Sn) in composition regions CeSb2-Sb-M were studied by optical and electron microscopy, X-ray diffraction, and electron probe microanalysis on arc-melted alloys and specimens annealed in the temperature region from 850 to 200 °C. The results, in combination with an assessment of all literature data available, were used to construct solidus surfaces and a series of isothermal sections. No ternary compounds were found to form in the Ce-Si-Sb system whilst Ce12Ge9−xSb23+x (3.3<x<4.2) and CeSnxSb2 (0.1<x<0.8) participate in phase equilibria in the composition region investigated. Crystallographic parameters for the ternary compound Ce12Ge9−xSb23+x (x=3.8±0.1) were determined from X-ray single crystal and powder diffraction. For the binary system Ge-Sb a eutectic was defined L⇔(Ge)+(Sb) at 591.6 °C and 22.5 at%. Ge EPMA revealed a maximal solubility of 6.3 at% Ge in (Sb) at the eutectic temperature.  相似文献   
26.
In this contribution, we present the synthesis and self‐assembly of alkylated thioethers with interesting photophysical properties. To this end, the emission, absorption and excitation spectra in organic solvents and as aggregates in water were measured as well as the corresponding photoluminescence quantum yields and lifetimes. The aggregates in aqueous media were visualized and measured using transmission electron microscopy. Besides that, crystal structures of selected compounds allowed a detailed discussion of the structure–property relationship. Furthermore, the mesomorphic behavior was investigated using polarized optical microscopy (POM) as well as differential scanning calorimetry (DSC).  相似文献   
27.
The increased levels of cyclic nucleotides (cGMP and cAMP) in enterocytes trigger intracellular mechanisms of ion and fluid secretion into the lumen, causing secretory diarrhea. Twelve novel pyridopyrimidines derived from 5-(3,5-bistrifluoromethylphenyl)-1,3-dimethyl-5,11-dihydro-1H-indeno[2,1 : 5,6]pyrido[2,3-d]pyrimidine-2,4,6-trione (FPIPP) were synthesized and evaluated on intracellular cyclic nucleotide accumulation. All compounds had no effect on either cyclic nucleotide basal levels or on pre-contracted aortic rings. The metabolic activity and viability in T84 cells, assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) and the LDH (lactate dehydrogenase) assays, respectively, were not affected by incubation with the compounds (50 μM). Compound VI almost abolished cGMP accumulation (94 % inhibition) induced by STa toxin in T834 cells and significantly reduced (69 %) forskolin-induced cAMP accumulation in Jurkat cells. Compound VI was active in an in vivo model for diarrhea in rabbits. These results prompted us to perform a microscopic histopathological analysis of intestinal tissues, showing that only compound VI preserves the intestine without significant pathological changes and with a decreased inflammatory pattern in comparison to FPIPP. In vitro stability test revealed that compound VI is resistant to oxidation promoted by atmospheric oxygen.  相似文献   
28.
The isothermal section at 500 °C of the Dy–Al–Si system was studied in the whole concentration range. The alloys were characterized by X-ray powder diffraction, scanning electron microscopy and electron micro-probe analysis. A few samples were analysed by differential thermal analysis. The following intermetallic compounds, some of them showing variable composition, were found: DyAl2Si21), hP5-CaAl2O2 structure type, Dy2Al3Si22) mS14-Y2Al3Si2 structure type, Dy2Al1+x Si2−x 3), 0 ≤ x ≤ 0.25, oI10-W2CoB2 structure type and Dy6Al3Si (τ4), tI80-Tb6Al3Si structure type. A number of binary phases dissolve the third element forming ternary solid solutions: Dy(Al1−x Si x )3, 0 ≤ x ≤ 0.5, hP16-Ni3Ti structure type, Dy(Al x Si1−x )2, 0 ≤ x ≤ 0.1, oI12-GdSi2 structure type, Dy(Al x Si1−x )1.67, 0 ≤ x ≤ 0.2, oI12-GdSi2 structure type, DyAl x Si1−x , 0 ≤ x ≤ 0.2, oC8-CrB, and Dy5(Al x Si1−x )3, 0 ≤ x ≤0.3, hP16-Mn5Si3 structure type. The melting point of Dy6Al3Si was determined.  相似文献   
29.
30.
The RENiZn (RE = La, Tb), RE2Ni2Zn (RE = La, Ce, Tb) and La3Ni3Zn ternary compounds were synthesized by two methods: by heating in a resistance furnace evacuated quartz ampoules containing Al2O3‐crucibles with element pieces and by induction melting in sealed Ta crucibles with subsequent annealing at 400 °C. Scanning electron microscopy (SEM) coupled with energy dispersive X‐ray spectroscopy (EDXS) was used for examining microstructure and phase composition of some of the alloys. The crystal structures for all the investigated phases were solved or confirmed on single crystal data by applying the direct methods refined by a standard least square procedure: LaNiZn – str. type ZrNiAl, hexagonal, , hP9, a = 0.7285(1), c = 0.3938(1) nm, wR2 = 0.0534, 257 F2 values, 14 variables; a = 0.7044(1), c = 0.3782(1) nm, wR2 = 0.0447, 236 F2 values, 14 variables for TbNiZn; La2Ni2Zn – str. type Pr2Ni2Al, orthorhombic, Immm, oI10, a = 0.4381(1), b = 0.5459(1) c = 0.8605(2) nm, wR2 = 0.0824, 223 F2 values, 13 variables; a = 0.4365(1), b = 0.5430(1) c = 0.8279(2) nm, wR2 = 0.0635, 209 F2 values, 13 variables for Ce2Ni2Zn; a = 0.4209(1), b = 0.5366(1) c = 0.8165 (1) nm, wR2 = 0.0757, 200 F2 values, 13 variables for Tb2Ni2Zn; La3Ni3Zn – str. type Y3Co3Ga, orthorhombic, Cmcm, oS28, a = 0.4276(1), b = 1.0310(2) c = 1.3636(3) nm, wR2 = 0.0859, 579 F2 values, 26 variables. The structural peculiarities of these compounds and their relations are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号