首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   607篇
  免费   41篇
化学   552篇
晶体学   3篇
力学   4篇
数学   36篇
物理学   53篇
  2023年   11篇
  2022年   24篇
  2021年   30篇
  2020年   18篇
  2019年   25篇
  2018年   13篇
  2017年   12篇
  2016年   32篇
  2015年   29篇
  2014年   38篇
  2013年   40篇
  2012年   64篇
  2011年   53篇
  2010年   26篇
  2009年   24篇
  2008年   38篇
  2007年   33篇
  2006年   29篇
  2005年   27篇
  2004年   18篇
  2003年   21篇
  2002年   16篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1996年   4篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1979年   1篇
排序方式: 共有648条查询结果,搜索用时 15 毫秒
81.
Stable colloidal dispersions of nanostructured semifluorinated acrylic particles with an unfluorinated core and an outer layer consisting of copolymers of the highly hydrophobic and lipophobic heptadecafluorodecyl methacrylate (FMA) were successfully synthesized with the assistance of three different cyclodextrins as phase‐transfer catalysts: β‐cyclodextrin (β‐CD), hydroxypropyl β‐cyclodextrin (HpCD), and methyl β‐cyclodextrin (MeCD). While all the cyclodextrins form a stable inclusion complex (IC) with FMA, only the ICs with the more hydrophilic HpCD and MeCD are soluble in water. Nevertheless, incorporation of FMA in the particle shell copolymer could be achieved also when using β‐CD. On the other hand, the morphology of the nanostructured particles was characterized by a “patchy” fluorinated shell dependent on the cyclodextrin used, the best results being obtained with MeCD. A monomer‐starved semicontinuous emulsion polymerization procedure was essential to favor the CD‐mediated incorporation of FMA into the copolymer structure and to achieve a stable colloidal dispersion even in the presence of small amounts of mixed anionic–nonionic surfactants. The thermal and surface properties of the latex films showed a good correlation with the shell composition and patchy nanostructured morphology of the particles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
82.
The upregulation of low-density lipoprotein (LDL) transporters in tumour cells has been exploited to deliver a sufficient amount of gadolinium/boron/ligand (Gd/B/L) probes for neutron capture therapy, a binary chemio-radiotherapy for cancer treatment. The Gd/B/L probe consists of a carborane unit (ten B atoms) bearing an aliphatic chain on one side (to bind LDL particles), and a Gd(III)/1,4,7,10-tetraazacyclododecane monoamide complex on the other (for detection by magnetic resonance imaging (MRI)). Up to 190 Gd/B/L probes were loaded per LDL particle. The uptake from tumour cells was initially assessed on cell cultures of human hepatoma (HepG2), murine melanoma (B16), and human glioblastoma (U87). The MRI assessment of the amount of Gd/B/L taken up by tumour cells was validated by inductively coupled plasma-mass-spectrometric measurements of the Gd and B content. Measurements were undertaken in vivo on mice bearing tumours in which B16 tumour cells were inoculated at the base of the neck. From the acquisition of magnetic resonance images, it was established that after 4-6 hours from the administration of the Gd/B/L-LDL particles (0.1 and 1 mmol kg(-1) of Gd and (10)B, respectively) the amount of boron taken up in the tumour region is above the threshold required for successful NCT treatment. After neutron irradiation, tumour growth was followed for 20 days by MRI. The group of treated mice showed markedly lower tumour growth with respect to the control group.  相似文献   
83.
Charged poly(N-isopropylacrylamide-co-methacrylic acid) [P(NiPAM-co-MAA)] microgels can stabilize thermo- and pH-sensitive emulsions. By placing charged units at different locations in the microgels and comparing the emulsion properties, we demonstrate that their behaviors as emulsion stabilizers are very different from molecular surfactants and rigid Pickering stabilizers. The results show that the stabilization of the emulsions is independent of electrostatic repulsion although the presence and location of charges are relevant. Apparently, the charges facilitate emulsion stabilization via the extent of swelling and deformability of the microgels. The stabilization of these emulsions is linked to the swelling and structure of the microgels at the oil-water interface, which depends not only on the presence of charged moieties and on solvent polarity but also on the microgel (core-shell) morphology. Therefore, the internal soft and porous structure of microgels is important, and these features make microgel-stabilized emulsions characteristically different from classical, rigid-particle-stabilized Pickering emulsions, the stability of which depends on the surface properties of the particles.  相似文献   
84.
Ionic hydrogen-bonding interactions have been found in several clusters formed by 5-fluorocytosine (5-FC). The chloride and trimethylammonium cluster ions, along with the cationic (proton-bound) dimer have been characterized by infrared multiple-photon dissociation (IRMPD) spectroscopy and electronic structure calculations performed at the B2PLYP/aug-cc-pVTZ//B3LYP/6-311+G(d,p) level of theory. IRMPD action spectra, in combination with calculated spectra and relative energetics, indicate that it is most probable that predominantly a single isomer exists in each experiment. For the 5-FC-trimethylammonium cluster specifically, the calculated spectrum of the lowest-energy isomer convincingly matches the experimental spectrum. Interestingly, the cationic dimer of 5-FC was found to have a single energetically relevant isomer (Cationic-IV) involving a tridentate ionic hydrogen-bonding interaction. The three sites of intermolecular ionic hydrogen bonds in this isomer interact very efficiently, leading to a significant calculated binding energy of 180 kJ/mol. The magnitude of the calculated binding energy for this species, in combination with the strong correlation between the simulated and IRMPD spectra, suggests that a tridentate-proton-bound dimer was observed predominantly in the experiments. Comparison of the calculated relative Gibbs free energies (298 K) for this species and several of the other isomers considered also supports the likelihood of the dominant protonated dimer existing as Cationic-IV.  相似文献   
85.
Thin films of a newly synthesized iron(III) porphyrazine, LFeOESPz ( L = ClEtO, OESPz = ethylsulfanylporphyrazine), have been deposited by the Langmuir-Schafer (LS) technique (horizontal lifting) on ITO or gold substrates. Before deposition, the floating films have been investigated at the air-water interface by pressure/area per molecule (pi/ A) experiments, Brewster angle microscopy (BAM) and UV-vis reflection spectroscopy (RefSpec). The complex reacts with water subphase (pH 6.2) forming the mu-oxo dimer, which becomes the predominant component of the LS films ( LS-Fe) as indicated by optical, IR, XPS, and electrochemical data. LS-Fe multilayers exhibit, between open circuit potential (OCP) and +0.90 V (vs SCE), two independent peak pairs with formal potentials, E surf (I) and E surf(II) of +0.56 V and +0.78 V, respectively. According to dynamic voltammetric and coulometric experiments the peak pair at +0.56 V is attributed to one-electron process at the iron(III) centers on the monomer, while the peak pair at +0.78 V is associated to a four-electron process involving mu-oxo-dimer oligomers. LS-Fe films prove to be quite stable electrochemically between OCP and +0.90 V. The electrochemical stability decreases, however, when the potential range is extended both anodically and cathodically outside these limits, due to formation of new species. Upon incubation with TCA solutions, LS-Fe films show remarkable changes in the UV-vis spectra, which are consistent with a significant mu-oxo dimer --> monomer conversion. Addition of TCA to the electrochemical cell using a LS-Fe film as working electrode, results in a linear increase of a cathodic current peak near -0.40 V as the TCA concentration varies in the 0.1-2.0 mM range. This behavior is interpreted in terms of TCA inducing a progressive change in the composition of the LS-Fe films in favor of the monomeric iron(III) porphyrazine, which is responsible for the observed increase in the cathodic current near -0.40 V.  相似文献   
86.
We present results of atomistic modelling of surface growth and sputtering using a multi-time scale molecular dynamics-on-the-fly kinetic Monte Carlo scheme which allows simulations to be carried out over realistic experimental times. The method uses molecular dynamics to model the fast processes and then calculates the diffusion barriers for the slow processes on-the-fly, without any preconceptions about what transitions might occur. The method is applied to the growth of metal and oxide materials at impact energies typical for both vapour deposition and magnetron sputtering. The method can be used to explain growth processes, such as the filling of vacancies and the formation of stacking faults. By tuning the variable experimental parameters on the computer, a parameter set for optimum crystalline growth can be determined. The method can also be used to model sputtering where the particle interactions with the surface occur at a higher energy. It is shown how a steady state can arise in which interstitial clusters are continuously being formed below the surface during an atom impact event which also recombine or diffuse to the surface between impact events. For fcc metals the near surface region remains basically crystalline during the erosion process with a pitted topography which soon attains a steady state roughness.  相似文献   
87.
88.
89.
A capillary electrophoresis method using CDs for quality control of esomeprazole (ESO) in terms of enantiomeric purity and related substances in raw material and pellets was developed. ESO is the S‐enantiomer of omeprazole (OMZ). Several parameters were evaluated, including type and concentration of buffer and CD, concentration of additives and electrolyte pH. Resolution between the enantiomers of OMZ obtained for each parameter tested was calculated and the presence of the main related substance such as OMZ sulfone was carefully monitored. The optimized system consisted of 100 mM Tris‐phosphate buffer pH 2.5 with 20 mM 2‐hydroxypropyl‐β‐CD, 1 mM sodium dithionite, temperature at 15°C, voltage at 28 kV, and UV detection at 301 nm. Once optimized, the electrophoretic system was validated according to ICH guidelines. The limits of detection and quantification for R‐OMZ were 0.6 μg/mL (0.06% w/w of ESO) and 2.0 μg/mL (0.2% w/w of ESO), respectively. A mean concentration of R‐OMZ <0.2% limit established by the United States Pharmacopeia (USP) was found in the raw material and six‐pellet samples of ESO. No other impurities were found in the samples under these conditions. Therefore, the developed method was found to be appropriate not only for enantiomeric quality control of ESO but also for the analysis of ESO and the main related substance in raw material and pharmaceutical formulations as well as for stability indicating studies.  相似文献   
90.
In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization time of flight) and ESI MS (electrospray mass spectrometry) for the determination of the structural architecture of biodegradable macromolecules, including their topology, composition, chemical structure of the end groups have been reported. However, MS methodologies have been recently applied to evaluate the biodegradation of polymeric materials. ESI MS represents the most useful technique for characterizing water-soluble polymers possessing different end group structures, with the advantage of being easily interfaced with solution-based separation techniques such as high-performance liquid chromatography (HPLC).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号