首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   579篇
  免费   53篇
化学   546篇
晶体学   3篇
力学   4篇
数学   30篇
物理学   49篇
  2023年   11篇
  2022年   24篇
  2021年   29篇
  2020年   18篇
  2019年   25篇
  2018年   13篇
  2017年   12篇
  2016年   32篇
  2015年   29篇
  2014年   38篇
  2013年   40篇
  2012年   63篇
  2011年   53篇
  2010年   24篇
  2009年   23篇
  2008年   37篇
  2007年   33篇
  2006年   27篇
  2005年   27篇
  2004年   17篇
  2003年   20篇
  2002年   16篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1996年   4篇
  1994年   3篇
排序方式: 共有632条查询结果,搜索用时 31 毫秒
581.
The fluorescent dye Nile red was used as a probe for the sensitive detection of large, denatured aggregates of the model protein β-galactosidase (E. coli) in solution. Aggregates were formed by irreversible heat denaturation of β-galactosidase below and above the protein’s unfolding temperature of 57.4°C, and the presence of aggregates in heated solutions was confirmed by static light scattering. Interaction of Nile red with β-galactosidase aggregates led to a shift of the emission maximum (λ max) from 660 to 611 nm, and to an increase of fluorescence intensity. Time-resolved fluorescence and fluorescence correlation spectroscopy (FCS) measurements showed that Nile red detected large aggregates with hydrodynamic radii around 130 nm. By steady-state fluorescence measurements, it was possible to detect 1 nM of denatured and aggregated β-galactosidase in solution. The comparison with size exclusion chromatography (SEC) showed that native β-galactosidase and small aggregates thereof had no substantial effect on the fluorescence of Nile red. Large aggregates were not detected by SEC, because they were excluded from the column. The results with β-galactosidase demonstrate the potential of Nile red for developing complementary analytical methods that overcome the size limitations of SEC, and can detect the formation of large protein aggregates at early stages.  相似文献   
582.

We present a densitometric quantification method for triclosan in toothpaste, separated by high-performance thin-layer chromatography (HPTLC) and using a 48-bit flatbed scanner as the detection system. The sample was band-wise applied to HPTLC plates (10 × 20 cm), with fluorescent dye, Merck, Germany (1.05554). The plates were developed in a vertical developing chamber with 20 min of chamber saturation over 70 mm, using n-heptane–methyl tert-butyl ether–acetic acid (92:8:0.1, V/V) as solvent. The RF value of triclosan is hRF = 22.4, and quantification is based on direct measurements using an inexpensive 48-bit flatbed scanner for color measurements (in red, green, and blue) after plate staining with 2,6-dichloroquinone-4-chloroimide (Gibbs' reagent). Evaluation of the red channel makes the measurements of triclosan very specific. For linearization, an extended Kubelka–Munk expression was used for data transformation. The range of linearity covers more than two orders of magnitude and is between 91 and 1000 ng. The separation method is inexpensive, fast and reliable.

  相似文献   
583.
The development of C−N bond formation reactions is highly desirable due to their importance in biology and chemistry. Recent progress in 3d metal catalysis is indicative of unique selectivity patterns that may permit solving challenges of chemical synthesis. We report here on a catalytic C−N bond formation reaction—the reductive alkylation of nitriles. Aldehydes or ketones and nitriles, all abundantly available and low-cost starting materials, undergo a reductive coupling to form secondary alkylamines and inexpensive hydrogen is used as the reducing agent. The reaction has a very broad scope and many functional groups, including hydrogenation-sensitive examples, are tolerated. We developed a novel cobalt catalyst, which is nanostructured, reusable, and easy to handle. The key seems the earth-abundant metal in combination with a porous support material, N-doped SiC, synthesized from acrylonitrile and a commercially available polycarbosilane.  相似文献   
584.
585.
586.
587.
A solid-phase microextraction method coupled with comprehensive gas chromatography and time-of-flight mass spectrometry for the determination of polycyclic aromatic hydrocarbons in vegetable oils has recently been reported. The present paper tested the possibility to use the solid-phase microextraction method coupled with one-dimensional gas chromatography-mass spectrometry of the only benzo[a]pyrene. Furthermore, an in-house validation for benzo[a]pyrene, used as a marker, as requested by the European regulation no. 208/2005, was carried out. Statistical tests were performed to elaborate the data. Linearity was satisfactory (r(2)=0.999), between about 0.5 and 15 microg/kg. Detection limit and quantification limit were 0.17 and 0.46 microg/kg, respectively. In-day and inter-day repeatability were less than 6% in both cases.  相似文献   
588.
A simple and fast solid-phase microextraction method coupled with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry was developed for analysis of polycyclic aromatic hydrocarbons in edible oil, performed directly in a hexane solution of the oil. Sampling conditions (solvent used, extraction time, extraction temperature and fiber rinsing time) were optimized by using a sample of oil fortified with a standard solution of polycyclic aromatic hydrocarbons. The method was validated by calculating linear range, correlation coefficient, accuracy, repeatability, detection limit and quantification limit. The method was applied to several oils collected from the market and directly from an olive pomace extraction plant.  相似文献   
589.
Pyochelin (Pch) and enantiopyochelin (EPch) are enantiomeric siderophores, with three chiral centers, produced under iron limitation conditions by Pseudomonas aeruginosa and Pseudomonas fluorescens , respectively. After iron chelation in the extracellular medium, Pch-Fe and EPch-Fe are recognized and transported by their specific outer-membrane transporters: FptA in P. aeruginosa and FetA in P. fluorescens . Structural analysis of FetA-EPch-Fe and FptA-Pch-Fe, combined with mutagenesis and docking studies revealed the structural basis of the stereospecific recognition of these enantiomers by their respective transporters. Whereas FetA and FptA have a low sequence identity but high structural homology, the Pch and EPch binding pockets do not share any structural homology, but display similar physicochemical properties. The stereospecific recognition of both enantiomers by their corresponding transporters is imposed by the configuration of the siderophore's C4' and C2' chiral centers. This recognition involves specific hydrogen bonds between the Arg91 guanidinium group and EPch-Fe for FetA and between the Leu117-Leu116 main chain and Pch-Fe for FptA. FetA and FptA are the first membrane receptors to be structurally described with opposite binding enantioselectivities for their ligands, giving insights into the structural basis of their enantiospecificity.  相似文献   
590.
Despite the central role of light absorption and the subsequent generation of free charge carriers in organic and hybrid organic-inorganic photovoltaics, the precise process of this initial photoconversion is still debated. We employ a novel broadband (UV-Vis-NIR) transient absorption spectroscopy setup to probe charge generation and recombination in the thin films of the recently suggested hybrid material combination poly(3-hexylthiophene)/silicon (P3HT/Si) with 40 fs time resolution. Our approach allows for monitoring the time evolution of the relevant transient species under various excitation intensities and excitation wavelengths. Both in regioregular (RR) and regiorandom (RRa) P3HT, we observe an instant (<40 fs) creation of singlet excitons, which subsequently dissociate to form polarons in 140 fs. The quantum yield of polaron formation through dissociation of delocalized excitons is significantly enhanced by adding Si as an electron acceptor, revealing ultrafast electron transfer from P3HT to Si. P3HT/Si films with aggregated RR-P3HT are found to provide free charge carriers in planar as well as in bulk heterojunctions, and losses are due to nongeminate recombination. In contrast for RRa-P3HT/Si, geminate recombination of bound carriers is observed as the dominant loss mechanism. Site-selective excitation by variation of pump wavelength uncovers an energy transfer from P3HT coils to aggregates with a 1/e transfer time of 3 ps and reveals a factor of 2 more efficient polaron formation using aggregated RR-P3HT compared to disordered RRa-P3HT. Therefore, we find that polymer structural order rather than excess energy is the key criterion for free charge generation in hybrid P3HT/Si solar cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号