首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1670篇
  免费   83篇
化学   1419篇
晶体学   3篇
力学   12篇
数学   113篇
物理学   206篇
  2023年   7篇
  2022年   17篇
  2021年   26篇
  2020年   38篇
  2019年   32篇
  2018年   20篇
  2017年   6篇
  2016年   57篇
  2015年   53篇
  2014年   49篇
  2013年   74篇
  2012年   94篇
  2011年   132篇
  2010年   72篇
  2009年   84篇
  2008年   87篇
  2007年   92篇
  2006年   87篇
  2005年   71篇
  2004年   75篇
  2003年   62篇
  2002年   59篇
  2001年   31篇
  2000年   21篇
  1999年   27篇
  1998年   25篇
  1997年   30篇
  1996年   32篇
  1995年   21篇
  1994年   18篇
  1993年   13篇
  1992年   17篇
  1991年   16篇
  1990年   12篇
  1989年   12篇
  1988年   11篇
  1987年   7篇
  1986年   5篇
  1985年   11篇
  1984年   11篇
  1983年   8篇
  1982年   13篇
  1981年   11篇
  1980年   9篇
  1979年   17篇
  1978年   12篇
  1977年   9篇
  1975年   5篇
  1974年   5篇
  1973年   9篇
排序方式: 共有1753条查询结果,搜索用时 218 毫秒
231.
The direct synthetic organic use of electricity is currently experiencing a renaissance. More synthetically oriented laboratories working in this area are exploiting both novel and more traditional concepts, paving the way to broader applications of this niche technology. As only electrons serve as reagents, the generation of reagent waste is efficiently avoided. Moreover, stoichiometric reagents can be regenerated and allow a transformation to be conducted in an electrocatalytic fashion. However, the application of electroorganic transformations is more than minimizing the waste footprint, it rather gives rise to inherently safe processes, reduces the number of steps of many syntheses, allows for milder reaction conditions, provides alternative means to access desired structural entities, and creates intellectual property (IP) space. When the electricity originates from renewable resources, this surplus might be directly employed as a terminal oxidizing or reducing agent, providing an ultra‐sustainable and therefore highly attractive technique. This Review surveys recent developments in electrochemical synthesis that will influence the future of this area.  相似文献   
232.
The auto triple correlation has several fundamental advantages over the ordinary autocorrelation of second order. We present an optoelectronic processor for the computation of the auto triple correlation.  相似文献   
233.
234.
Polyphenols belonging to the class of secondary metabolites of plants and microorganisms play an important role as bioactive food constituents as well as contaminants. Structure elucidation of polyphenols in plant extracts or polyphenol metabolites, especially those arising during biotransformation, still represents a challenge for analytical chemistry. Various approaches have been proposed to utilize fragmentation reactions in connection with mass spectrometry (MS) for structural considerations on polyphenolic targets. We compiled and applied specific liquid chromatography (LC)–electrospray ionization in positive mode [ESI(+)]–tandem MS (MS/MS) and gas chromatography (GC)–(electron impact, EI)–MS/MS fragmentation reactions with a special focus on the analysis of isoflavones, whereby this technique was also found to be extendable to determine further polyphenols. For ESI(+)-MS the basic retro-Diels–Alder (rDA) fragmentation offers information about the substitution pattern in the A- and B-rings of flavonoids and the elimination of a protonated 4-methylenecyclohexa-2,5-dienone (m/z = 107) fragment can be used as a diagnostic tool for many isoflavanones. For GC-(EI)-MS/MS analysis after derivatization of the analytes to their trimethylsilyl ethers, the elimination of methyl radicals, tetramethylsilane groups or the combined loss of two methyl groups can be shown to be specific for certain substitution patterns in polyphenols. The applicability of the fragmentation reactions presented is demonstrated exemplarily for three derivatives of the isoflavone irilone. With the help of these fragmentation reactions of the two MS techniques combined, a reliable identification of polyphenols is possible. Especially in such cases where NMR cannot be utilized owing to low analyte amounts being available or prior to purification, valuable information can be obtained. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Ronald Maul and Nils Helge Schebb contributed equally to this work.  相似文献   
235.
236.
The elucidation of the metabolism of new therapeutics is a major task for pharmaceutical companies and of great interest for drug testing laboratories. The latter in particular need to determine the presence or absence of drugs or their metabolic products in urine to test for a misuse of these compounds. Commonly, in vitro or animal models are used to mimic the human metabolism and produce potential targets in amounts allowing for method development. An alternative route based on electrochemical reactions of drugs was reported to allow for the generation of selected metabolites. The utility of this approach for doping control purposes was demonstrated with a novel class of anabolic agents termed selective androgen receptor modulators (SARMs). An arylpropionamide- derived drug candidate was subjected to electrochemical "metabolism" and a major phase-I- metabolite, resulting from the elimination of a substituted phenol residue as identified in in vitro experiments, was generated and characterised using liquid chromatography/nuclear magnetic resonance spectroscopy and high resolution/high accuracy mass spectrometry. The metabolite was included in routine doping control procedures based on liquid chromatography/tandem mass spectrometry and has served as a reference compound for 5000 doping control specimens.  相似文献   
237.
Macrocyclic molecules containing several amide or urea functions may serve as anion receptors. We describe the synthesis of 32-membered macrocycles, in which four rigid xanthene units (X) and/or diphenyl ether units (D) as flexible analogues are linked via urea groups. All six possible combinations of these units (XXXX, XXXD, XXDD, XDXD, XDDD and DDDD) were synthesized and two examples were characterised by single-crystal X-ray analyses (DDDD and two structures for XXXD). Both macrocycles showed distinct differences in their overall conformation and consequently in their hydrogen-bonding pattern. Hydrogen-bonded solvent molecules are found for both compounds and intramolecular hydrogen bonds for the two structures of XXXD, but surprisingly no direct intermolecular hydrogen bonds between the macrocyclic tetraurea molecules. The interaction with various anions was studied by (1)H NMR spectroscopy. Stability constants for all tetramers were determined by UV spectroscopy for complexes with chloride, bromide, acetate and dihydrogenphosphate in acetonitrile-THF (3:1). The strongest binding was found for XXXD and acetate (log beta = 7.4 +/- 0.2), the weakest for XXXX and acetate (log beta = 5.1 +/- 0.5). MD simulations in chloroform and acetonitrile boxes show that all molecules except DDDD adopt very similar conformations characterized by an up-down-up-down arrangement of the spacer groups. Clustered solvation shells of acetonitrile molecules around XXXX and DDDD suggest their preorganization for spherical/planar and tetrahedral/bidentate anions, respectively, which in turn was corroborated by simulation of the corresponding complexes with chloride and dihydrogenphosphate.  相似文献   
238.
Hexaalkoxy‐substituted azamacrocyclic metal complexes 1 · MXn [MXn = FeCl3, CuCl2, SrCl2, Ln(NO3)3; Ln = La, Pr, Eu, Ho, Er] with various chain lengths were prepared by a convergent approach using 1,2‐bisalkoxy‐4,5‐diamines 3 and 4‐alkoxy‐pyridine‐2,6‐dicarbaldehydes 4 as key building blocks for template‐assisted cyclocondensation. Metal complexes 1 · MXn were considered as potential metallomesogens. However, differential scanning calorimetry and optical polarizing microscopy of 1 · MXn did not reveal any mesomorphism. The magnetic susceptibility shows deviation from Curie‐like behavior. Due to ligand field effects the effective magnetic moments are a function of the temperature. In order to obtain structural informations on the free ligand 1 , which is synthetically not accessible, theoretical calculations were carried out. For the free azamacrocycle 2a and the free hexamethoxy‐substituted azamacrocycle 1a the IR spectra were computed at the level of density functional theory. A planar and a saddle‐shaped conformation was considered. The IR spectra and especially the dependence of the C=N vibration on the structural parameters and the charge distribution are discussed.  相似文献   
239.
This aim of this study was to evaluate the penetration depth, antioxidant capacity and the clinical efficacy of Melaleuca alternifolia pure essential oil and in a nanoemulsion to prevent skin photoaging. For this, 2% of pure essential oil or 2% of this essential oil in a nanoemulsion were vehiculated in a formulation. The skin penetration was evaluated using confocal Raman microspectroscopy. The radical protection factor was evaluated using electron paramagnetic resonance spectroscopy. For a clinical study, 40 male participants, aged 18–28 years, were enrolled, being divided into three groups: vehicle formulation, M. alternifolia pure essential oil and M. alternifolia Nanoemulsion. All the participants also received a sunscreen SPF 50 to use during the day. Before and after 90 days of study, skin hydrolipidics and morphological characteristics were performed by skin imaging and biophysical techniques. The nanoemulsion presented a lower antioxidant capacity and a higher penetration through the stratum corneum, reaching the viable epidermis, improving the stratum granulosum morphology. The groups presented an increase in the papillary depth, improving in the dermis echogenicity and the collagen fibers. Melaleuca alternifolia essential provides the potential to improve photoaged skin, being the application of nanoemulsion able to reach deeper skin layers.  相似文献   
240.
Ultrathin titanium layers when deposited on the surface of gold can be successfully applied for infrared reflection absorption spectroscopy (IRRAS) investigations. It was shown that the reflectivity, the phase shift, and the mean square electric field of the p- and s-polarized IR radiation in up to 20 nm thick titanium layers covered with a 3-4 nm thick layer of native oxide are comparable to those of the air/gold interface. The surface selection rule is fulfilled. Thus, qualitative and quantitative analysis of 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) bilayers transferred in liquid expanded (LE) and liquid condensed (LC) states can be performed. Differences are found in the hydration state and molecular arrangement of the two investigated bilayers. In the DMPC bilayer in the LE state, the C-N bond in the positively charged choline moiety is inclined by approximately 70 degrees toward the surface of the negatively charged titanium substrate. In the phosphate moiety, the in-plane vector of the O-P-O group makes a small angle of approximately 15 degrees to the surface normal. This open structure of the lipid molecule corresponds to the B crystal structure of the DMPC molecule and provides space for strong hydration of the polar headgroup. In the DMPC bilayer in the LC state, the intermolecular distances are reduced; the C-N bond of the choline group makes a smaller angle to the surface normal, and the in-plane vector of the O-P-O group in the phosphate moiety displays a larger tilt. The degree of hydration is reduced. The arrangement of the polar headgroup region corresponds to the A crystal structure of the DMPC molecule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号