首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11980篇
  免费   2394篇
  国内免费   5081篇
化学   9230篇
晶体学   622篇
力学   856篇
综合类   390篇
数学   1866篇
物理学   6491篇
  2024年   28篇
  2023年   115篇
  2022年   424篇
  2021年   419篇
  2020年   396篇
  2019年   419篇
  2018年   363篇
  2017年   592篇
  2016年   383篇
  2015年   567篇
  2014年   744篇
  2013年   1055篇
  2012年   955篇
  2011年   1112篇
  2010年   1156篇
  2009年   1208篇
  2008年   1297篇
  2007年   1196篇
  2006年   1175篇
  2005年   953篇
  2004年   767篇
  2003年   549篇
  2002年   539篇
  2001年   540篇
  2000年   667篇
  1999年   330篇
  1998年   192篇
  1997年   143篇
  1996年   153篇
  1995年   107篇
  1994年   129篇
  1993年   128篇
  1992年   101篇
  1991年   65篇
  1990年   81篇
  1989年   82篇
  1988年   66篇
  1987年   55篇
  1986年   38篇
  1985年   22篇
  1984年   22篇
  1983年   21篇
  1982年   19篇
  1981年   20篇
  1980年   11篇
  1979年   7篇
  1978年   6篇
  1971年   5篇
  1965年   11篇
  1959年   5篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
991.
利用Monte Carlo模拟, 对比了相同组成下环形二嵌段共聚物AB和线形三嵌段共聚物ABA在选择性溶剂中的胶束化行为. 结果发现, 相同链组成的环形和线形嵌段共聚物的临界胶束浓度(cmc)的差别与A嵌段的比例(fA)及B嵌段间的吸引强度(ε)密切相关. 在fA较小、 ε较大的情况下, 相应环形嵌段共聚物的cmc值更小; 而在fA较大、 ε较小的情况下, 线形嵌段共聚物的cmc值更小. 为了进一步理解胶束化行为同fAε的关系, 计算了胶束化过程中熵和势能部分对自由能的贡献. 结果表明, 在所研究的fAε范围内, 环形嵌段共聚物形成胶束时的熵损失更小, 因而从熵贡献角度来看, 环形嵌段共聚物更易发生胶束化. 而从势能贡献角度来看, 当fA较小、 ε较大时, 环形嵌段共聚物形成胶束时势能有较大程度的降低, 对自由能的贡献更大, 因而此时环形嵌段共聚物更易发生胶束化. 而当fA较大、 ε较小时, 线形嵌段共聚物形成胶束时势能有较大程度的降低, 对自由能的贡献更大, 因而此时线形嵌段共聚物更易发生胶束化. 由此可见, 对体系的胶束化自由能进行系统分析, 有助于更好地理解环形和线形嵌段共聚物的胶束化行为.  相似文献   
992.
以芳香酸为原料, 通过酯化、 肼解及环化反应制得中间体5-芳基取代-1,3,4-噁二唑-2-硫酮(C1~C3), 然后中间体与甲醛和取代氨基嘧啶(D1~D5)发生Mannich反应得到一系列新型含有嘧啶环的1,3,4-噁二唑类衍生物(E1~E15). 所得目标化合物的结构经元素分析、 IR及 1H NMR确认. 初步的生物活性测定结果表明, 大部分目标化合物对植物病原菌有很好的抑制作用, 其中化合物E3和E8的抑菌效果优于对照药三唑酮.  相似文献   
993.
报道了异长春花苷内酰胺在水溶液中经自然光照射后, 发生光氧化反应, 主要降解产物为(3S)-短小蛇根草苷. 采用通入氧气和日光灯照射的方法可加速异长春花苷内酰胺光降解, (3S)-短小蛇根草苷的产率为56%.  相似文献   
994.
通过吡啶基与金属锌卟啉的配位作用, 合成了一种新型卟啉-苝酰亚胺超分子配合(TPPZn-BPHPDI), 通过核磁共振氢谱确认了超分子体系的形成. 采用荧光滴定方法测得锌卟啉与苝酰亚胺配位作用的平衡常数为5.32×104 L/mol. 纳秒瞬态荧光光谱和瞬态吸收光谱显示, 超分子体系内存在着从卟啉三线态向苝酰亚胺三线态的能量传递过程, 产生了寿命长达101 μs的苝酰亚胺三线态分子.  相似文献   
995.
通过溶液浸渍蒸干过程实现了磷酸对Fe2O3纳米粒子的表面修饰, 研究了磷酸修饰对纳米Fe2O3的热稳定性及光催化活性的影响. 结果表明, 磷酸修饰显著提高了Fe2O3的热稳定性, 主要归因于磷酸修饰在样品表面抑制了粒子之间的团聚生长. 同时, 在光催化降解气相乙醛和液相苯酚的测试中, 磷酸修饰后热处理温度为600 ℃的样品表现出了最佳的可见光催化性能, 这主要归因于该样品具有高晶化度、 小粒子尺寸及大比表面积, 并且适量的修饰有利于其光催化性能的提高.  相似文献   
996.
黄福  张帆  王波  孙华菊 《应用化学》2014,31(12):1458-1464
以乙二胺(EDA)还原氧化石墨烯(GO)制得一种吸附材料,即还原态氧化石墨烯(RGO)。 采用批量平衡法研究了RGO对Zn(Ⅱ)的吸附动力学与热力学,利用Lagergren准一级及准二级动力学方程、Langmuir和Freundlich等温方程对实验数据进行了拟合分析。 研究结果表明,Lagergren准二级吸附动力学模型能够较好地描述实验结果,表明该吸附过程以化学吸附为主。 RGO的吸附在所研究的Zn(Ⅱ)浓度范围内更符合Langmuir等温吸附经验式,ΔH0=-21.60 kJ/mol,吸附焓变小于零,表明该吸附为放热过程;吸附吉布斯自由能变化ΔG0为正值,表明该吸附是一个非自发的过程。  相似文献   
997.
手性环氧化物是重要的有机反应中间体.金属氧化酶催化的氧化反应通常具有高效、高选择性、反应条件温和和绿色的特点,模拟其中的非血红素铁加氧酶设计合成一系列手性四氮铁锰配合物催化烯烃不对称环氧化反应成为获得高产率、高对映选择性的手性环氧化物的一个重要方法.本文综述了近年来非血红素手性四氮铁锰配合物催化烯烃不对称环氧化反应的研究进展及相应的机理研究.  相似文献   
998.
应用高效液相色谱-串联质谱法(HPLC-MS/MS)测定了食品中EDTA二钠盐。液态食品(5g)直接加水40mL提取;固态或酱状食品(5g)加水15mL及三氯甲烷20mL匀质后离心,取其上清液,残渣重复提取2次。合并上清液,在提取液中加入三氯化铁溶液超声10min衍生化后,定容至50mL。取样品溶液5mL,经MAX阴离子交换柱净化,用甲酸-甲醇-水(10+50+40)混合液6mL洗脱,洗脱液经80℃吹氮蒸干,用水溶解后进行HPLC-MS/MS分析。EDTA二钠盐的质量浓度在1.0~50.0mg·L-1范围内呈线性。方法的检出限(3S/N)为5mg·kg-1。应用提出的方法分析了4种食品样品并进行加标回收试验,测得回收率在88.3%~96.0%之间,测定值的相对标准偏差(n=6)均小于10%。  相似文献   
999.
本文采用偏苯三酸酐修饰的超高交联吸附树脂(TMAMR)和羟丙基纤维素修饰的超高交联吸附树脂(HPCMR)作为吸附剂,以NDA150树脂作对照,研究了3种树脂对水中四环素的吸附性能和吸附机理,同时考察了p H值和Na+浓度对TMAMR和HPCMR树脂吸附四环素的影响。结果表明,TMAMR和HPCMR树脂的比表面积较高,树脂表面修饰了大量的羟基,对四环素均具有较好的吸附性能。3种树脂对四环素的吸附量均随着温度的升高而增大,吸附过程中同时存在较强的物理吸附和化学吸附作用。Langmuir和Freundlich等温吸附方程均能够较好地拟合吸附等温线,吸附机理较复杂。吸附热力学结果表明,四环素在3种树脂上的吸附为自发的吸热过程,且吸附过程的熵增加。p H值对TMAMR和HPCMR树脂吸附四环素有较大的影响,在中性条件下,树脂对四环素的吸附量最大,在强酸和强碱条件下树脂的吸附量均较低。吸附液中加入无机盐后,发生盐析作用,导致TMAMR和HPCMR树脂对四环素的吸附量增大。  相似文献   
1000.
通过水热法合成了2个配位聚合物:[Cu(H2dpcp)2]n(1)和[Mn2(Hdpcp)2(H2O)2·2H2O]n(2)[H3dpcp=5-(2,4-二羧基苯基)-2-羧基吡啶],H3dpcp由3-(2,4-二羧基苯基)-2,6-二羧基吡啶(H4dpdp)原位脱羧生成。X-射线单晶衍射测得2个化合物都属于单斜晶系,化合物1结晶在P21/c空间群,a=0.639(13)nm,b=1.835(4)nm,c=1.115(2)nm,β=102.29(3)°,Z=2;化合物2结晶在C2/c空间群,a=3.126(6)nm,b=1.004(2)nm,c=1.080(2)nm,β=93.73(3)°,Z=4。化合物1以配体H2dpcp-桥连Cu( Ⅱ)形成一维链状结构。化合物2通过Hdpcp2-桥连Mn( Ⅱ)形成二维层状结构,并进一步通过氢键作用形成三维超分子结构。负的Weiss常数θ表明化合物2存在反铁磁耦合作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号