首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18295篇
  免费   3232篇
  国内免费   4831篇
化学   14924篇
晶体学   618篇
力学   954篇
综合类   389篇
数学   2233篇
物理学   7240篇
  2024年   41篇
  2023年   258篇
  2022年   623篇
  2021年   614篇
  2020年   701篇
  2019年   752篇
  2018年   673篇
  2017年   824篇
  2016年   821篇
  2015年   1017篇
  2014年   1173篇
  2013年   1527篇
  2012年   1569篇
  2011年   1762篇
  2010年   1539篇
  2009年   1465篇
  2008年   1659篇
  2007年   1488篇
  2006年   1333篇
  2005年   1150篇
  2004年   875篇
  2003年   694篇
  2002年   713篇
  2001年   671篇
  2000年   558篇
  1999年   353篇
  1998年   226篇
  1997年   155篇
  1996年   181篇
  1995年   150篇
  1994年   134篇
  1993年   95篇
  1992年   96篇
  1991年   82篇
  1990年   60篇
  1989年   49篇
  1988年   39篇
  1987年   45篇
  1986年   30篇
  1985年   27篇
  1984年   22篇
  1983年   20篇
  1982年   22篇
  1981年   10篇
  1980年   7篇
  1979年   12篇
  1978年   5篇
  1976年   5篇
  1975年   4篇
  1971年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The sorption isotherms of CO2 in wet ordered mesoporous silica KIT-6 with different amounts of pre-adsorbed water were firstly collected experimentally using a volumetric method in the temperature range of 275–281 K. The isotherms show an inflection point indicating CO2 hydrates form in the pore spaces which is proofed by the enthalpy change calculated at the inflection pressure, and the quantity of water content shows considerable effect on the sorption capacity of CO2. The highest enhancement of sorption capacity in the presence of water is observed in wet KIT-6 sample with water loadings of 2.48, which is about 12.80 mmol/g and 1.86 times than that on dry sample. However, the saturation capacity is still far less than that what can be stored merely in the form of hydrates due to the low ratio of water utilization because of the large pore and the polar surface of KIT-6.  相似文献   
992.
Three dimensional Liesegang spherical layers of CaHPO4 in gelatin ball were performed by employing CaCl2 and Na2HPO4 as the inner and outer electrolyte, respectively. Effects of concentrations of inner and outer electrolyte as well as pH on the morphologies of Liesegang rings (LRs) were investigated. As a result, it was observed that the time law, spacing law and width law found in 1D/2D gel systems were obeyed in this 3D gelatin system. The interaction of Ca2+ and HPO4 2? with gelatin matrix played a key role to the formation of LRs due to the existence of carboxylic groups on the gelatin chains. Using Ca2+ as the inner electrolyte, LRs were prepared. However, employing HPO4 2? as inner electrolyte, LRs were not obtained. Moreover, pH of gelatin solution greatly impacted on the formation of LRs. The number of LRs increased with the decrease of pH, whereas the width inversely decreased. pH 4.40 was a turn point, from which the spacing coefficient abruptly increased as pH increased. All these results indicated that the network was created by the interaction of Ca2+ and –COO? of gelatin chains, which dominated the formation of CaHPO4 LRs in gelatin.  相似文献   
993.
Magnetic nickel ferrite (NiFe2O4) was prepared by sol–gel process and calcined in the 2.45 GHz singlemode microwave furnace to synthesize nickel nanopowder. The sol–gel method was used for the processing of the NiFe2O4 powder because of its potential for making fine, pure and homogeneous powders. Sol–gel is a chemical method that has the possibility of synthesizing a reproducible material. Microwave energy is used for the calcining of this powder and the sintering of the NiFe2O4 samples. Its use for calcination has the advantage of reducing the total processing time and the soak temperature. In addition to the above combination of sol–gel and microwave processing yields to nanoscale particles and a more uniform distribution of their sizes. X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy and vibrating sample magnetometer were carried out to investigate structural, elemental, morphological and magnetic aspects of NiFe2O4. The results showed that the mean size and the saturation magnetization of the NiFe2O4 nanoparticles are about 30 nm and 55.27 emu/g, respectively. This method could be used as an alternative to other chemical methods in order to obtain NiFe2O4 nanoparticles.  相似文献   
994.
基于二聚氰胺和三聚氰胺在Pt盘电极上对Ru(bpy)2+3的发光有增敏效果,建立了毛细管电泳电化学发光法同时分离检测乳制品中二聚氰胺和三聚氰胺的含量的新方法。进行实验条件优化,采用5 mmol/L Ru(bpy)32++60 mmol/L pH 8.5磷酸缓冲液,10 kV×10 s电动进样,光电倍增管高压为900 V,检测电位为1.18V,分离电压为12 kV,使得二聚氰胺和三聚氰胺得到了很好的分离检测,对奶粉样品进行添加回收率实验,二聚氰胺和三聚氰胺的回收率分别为94.6%~97.8%和95.9%~97.4%,相对标准偏差分别为3.2%~4.6%和2.7%~4.1%。  相似文献   
995.
Redox homeostasis is one of the main reasons for reactive oxygen species (ROS) tolerance in hypoxic tumors, limiting ROS-mediated tumor therapy. Proposed herein is a redox dyshomeostasis (RDH) strategy based on a nanoplatform, FeCysPW@ZIF-82@CAT Dz, to disrupt redox homeostasis, and its application to improve ROS-mediated hypoxic tumor therapy. Once endocytosed by tumor cells, the catalase DNAzyme (CAT Dz) loaded zeolitic imidazole framework-82 (ZIF-82@CAT Dz) shell can be degraded into Zn2+ as cofactors for CAT Dz mediated CAT silencing and electrophilic ligands for glutathione (GSH) depletion under hypoxia, both of which lead to intracellular RDH and H2O2 accumulation. These “disordered” cells show reduced resistance to ROS and are effectively killed by ferrous cysteine-phosphotungstate (FeCysPW) induced chemodynamic therapy (CDT). In vitro and in vivo data demonstrate that the pH/hypoxia/H2O2 triple stimuli responsive nanocomposite can efficiently kill hypoxic tumors. Overall, the RDH strategy provides a new way of thinking about ROS-mediated treatment of hypoxic tumors.  相似文献   
996.
A remarkable PL enhancement by 12 fold is achieved using pressure to modulate the structure of a recently developed 2D perovskite (HA)2(GA)Pb2I7 (HA=n-hexylammonium, GA=guanidinium). This structure features a previously unattainable, extremely large cage. In situ structural, spectroscopic, and theoretical analyses reveal that lattice compression under a mild pressure within 1.6 GPa considerably suppresses the carrier trapping, leading to significantly enhanced emission. Further pressurization induces a non-luminescent amorphous yellow phase, which is retained and exhibits a continuously increasing band gap during decompression. When the pressure is released to 1.5 GPa, emission can be triggered by above-band gap laser irradiation, accompanied by a color change from yellow to orange. The obtained orange phase could be retained at ambient conditions and exhibits two-fold higher PL emission compared with the pristine (HA)2(GA)Pb2I7.  相似文献   
997.
Compared to 2PE (two-photon excitation) microscopy, 3PE microscopy has superior spatial resolution, deeper tissue penetration, and less defocused interference. The design of suitable agents with a large Stokes shift, good three-photon absorption (3PA), subcellular targeting, and fluorescence lifetime imaging (FLIM) properties, is challenging. Now, two IrIII complexes (3PAIr1 and 3PAIr2) were developed as efficient three-photon phosphorescence (3PP) agents. Calculations reveal that the introduction of a new group to the molecular scaffold confers a quadruple promotion in three-photon transition probability. Confocal and lifetime imaging of mitochondria using IrIII complexes as 3PP agents is shown. The complexes exhibit low working concentration (50 nm ), fast uptake (5 min), and low threshold for three-photon excitation power (0.5 mW at 980 nm). The impressive tissue penetration depth (ca. 450 μm) allowed the 3D imaging and reconstruction of brain vasculature from a living specimen.  相似文献   
998.
The stereospecific 1,2-migration of boronate complexes is one of the most representative reactions in boron chemistry. This process has been used extensively to develop powerful methods for asymmetric synthesis, with applications spanning from pharmaceuticals to natural products. Typically, 1,2-migration of boronate complexes is driven by displacement of an α-leaving group, oxidation of an α-boryl radical, or electrophilic activation of an alkenyl boronate complex. The aim of this article is to summarize the recent advances in the rapidly expanding field of electrophile-induced stereospecific 1,2-migration of groups from boron to sp2 and sp3 carbon centers. It will be shown that three different conceptual approaches can be utilized to enable the 1,2-migration of boronate complexes: stereospecific Zweifel-type reactions, catalytic conjunctive coupling reactions, and transition metal-free sp2–sp3 couplings. A discussion of the reaction scope, mechanistic insights, and synthetic applications of the work described is also presented.  相似文献   
999.
Precise atomic structure of metal nanoclusters (NCs) is fundamental for elucidating the structure–property relationships and the inherent size-evolution principles. Reported here is the largest known FCC-based (FCC=face centered cubic) silver nanocluster, [Ag100(SC6H33,4F2)48(PPh3)8]: the first all-octahedral symmetric nesting Ag nanocluster with a four-layered Ag6@Ag38@Ag48S24@Ag8S24P8 structure, consistent symmetry elements, and a unique rhombicuboctahedral morphology distinct from theoretical predictions and previously reported FCC-based Ag clusters. DFT studies revealed extensive interlayer interactions and degenerate frontier orbitals. The FCC-based Russian nesting doll model constitutes a new platform for the study of the size-evolution principles of Ag NCs.  相似文献   
1000.
Device simplification is of practical significance for organic light emitting diodes (OLEDs), and remains the great challenge for deep-red emitters. Herein, a deep-red thermally activated delayed fluorescence molecule ( p TPA-DPPZ ) is reported which features a T shaped structure containing two triphenylamine (TPA) donors, one either side of a planar dipyridophenazine (DPPZ) acceptor. The rational spatial arrangement of the functional groups leads to limited but sufficient molecular packing for effective carrier transport. The neat p TPA-DPPZ film achieves an around 90-fold improved radiation rate constant of 107 s−1 and the nearly unitary reverse intersystem crossing (RISC) efficiency, as well as accelerated emission decays for quenching suppression. The high radiation and RISC result in a photoluminescence quantum yield of 87 %. The bilayer OLED based on the p TPA-DPPZ emissive layer achieved the record external quantum efficiencies of 12.3 % for maximum and 10.4 % at 1000 nits, accompanied by the deep-red electroluminescence with the excellent color purity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号