The detonation characteristics of methane–oxygen mixtures at pre-detonation pressures of 101–1,013 kPa were investigated in a detonation tube. Both pure methane–oxygen mixtures and mixtures with argon dilution were explored. Measurements made include cell sizes via soot foil, wave speed via high speed ion probes / pressure transducers, and temperature / H2O molar concentration profiles via 100 kHz absorption spectroscopy. Measured cell widths agreed with predicted cell widths based on a ZND length correlation. In addition, the power law fit of cell width with pre-detonation pressure agreed with previous data at less than 101 kPa. Measured detonation wave speeds agreed within 3% of Chapmen-Jouguet for all cases. H2O molar density and temperature were successfully captured up to 507 kPa. However, above 507 kPa pre-detonation pressure, low signal to noise ratio and poor spectral fits at the extreme conditions of the von Neumann spike resulted in unacceptable uncertainty. These results provide a unique dataset to validate kinetics models and high-fidelity computation fluid dynamics codes for methane-oxygen detonations at elevated pre-detonation pressures relevant to rotating detonation rocket engines. 相似文献
Propanol and butanol isomers have received significant research attention as promising fuel additives or neat biofuels. Robust chemical kinetic models are needed that can provide accurate and efficient predictions of combustion performance across a wide range of engine relevant conditions. This study seeks to improve the understanding of ignition and combustion behavior of pure C3-C4 linear and iso-alcohols, and their blends with gasoline at engine-relevant conditions. In this work, a kinetic model with improved thermochemistry and reaction kinetics was developed based on recent theoretical calculations of H-atom abstraction and peroxy radical reaction rates. Kinetic model validations are reported, and the current model reproduces the ignition delay times of the C3 and C4 alcohols well. Variations in reactivity over a wide range of temperatures and other operating conditions are also well predicted by the current model. Recent ignition delay time measurements from a rapid compression machine of neat iso-propanol and iso-butanol [Cheng et al., Proc. Combust Inst. (2020)] and blends with a research grade gasoline [Goldsborough et al., Proc. Combust Inst. (2020)] at elevated pressure (20–40 bar) and intermediate temperatures (780–950 K) were used to demonstrate the accuracy of the current kinetic model at conditions relevant to boosted spark-ignition engines. The effects of alcohol blending with gasoline on the autoignition behavior are discussed. The current model captures the suppression of reactivity in the low-temperature and negative-temperature-coefficient (NTC) region when either isopropanol and isobutanol are added to a research grade gasoline. Sensitivity and reaction flux analysis were performed to provide insights into the relevant fuel chemistry of the C3-C4 alcohols. 相似文献
Doklady Physics - It is been established that thin semiconductor quantum rings in an external magnetic field have unique selection properties: by choosing the type of heterostructure and the... 相似文献
Doklady Physics - The effect of a “black hole” for elastic waves, discovered by M.A. Mironov and examined in detail by followers, is usually associated with propagation of elastic waves... 相似文献
Doklady Physics - The Landau–Lifshitz equation modified by quantum fluctuations of the magnetic moment is proposed, on the basis of which several new effects in electron paramagnetic... 相似文献
Doklady Physics - For the first time, the process of formation and restructuring of a regular system of inclined loops containing the substance of a freely falling colored drop in the depth of the... 相似文献
The authors investigate the effect of anisotropy of the frequency-angular spectrum of wind waves on the efficiency of spatial processing signals received by a horizontal array in a shallow water waveguide with a rough surface. The array gain is analyzed for three array signal processors: conventional beamformer, optimal linear processor, and optimal quadratic processor. The numerical simulation results for the hydrological conditions typical of the Barents Sea in winter are presented. The main focus is on the dependence of the array gain on the distance to the source and wind direction with respect to the acoustic path. Simulation results for the anisotropic wind wave spectrum and a simplified model with an isotropic spectrum are also compared.
Over the last two decades, quantum memories have been intensively studied for potential applications of quantum repeaters in quantum networks. Various protocols have also been developed. To satisfy no noise echoes caused by spontaneous emission processes, a conventional two-pulse photon-echo scheme has been modified. The resulting methods include double-rephasing, ac Stark, dc Stark, controlled echo, and atomic frequency comb methods. In these methods, the main purpose of modification is to remove any chance of a population residual on the excited state during the rephasing process. Here, we investigate a typical Gaussian rephasing pulse-based double-rephasing photon-echo scheme. For a complete understanding of the coherence leakage by the Gaussian pulse itself, ensemble atoms are thoroughly investigated for all temporal components of the Gaussian pulse, whose maximum echo efficiency is 26% in amplitude, which is unacceptable for quantum memory applications. 相似文献
The various facets of the internal disorder of quantum systems can be described by means of the Rényi entropies of their single-particle probability density according to modern density functional theory and quantum information techniques. In this work, we first show the lower and upper bounds for the Rényi entropies of general and central-potential quantum systems, as well as the associated entropic uncertainty relations. Then, the Rényi entropies of multidimensional oscillator and hydrogenic-like systems are reviewed and explicitly determined for all bound stationary position and momentum states from first principles (i.e., in terms of the potential strength, the space dimensionality and the states’s hyperquantum numbers). This is possible because the associated wavefunctions can be expressed by means of hypergeometric orthogonal polynomials. Emphasis is placed on the most extreme, non-trivial cases corresponding to the highly excited Rydberg states, where the Rényi entropies can be amazingly obtained in a simple, compact, and transparent form. Powerful asymptotic approaches of approximation theory have been used when the polynomial’s degree or the weight-function parameter(s) of the Hermite, Laguerre, and Gegenbauer polynomials have large values. At present, these special states are being shown of increasing potential interest in quantum information and the associated quantum technologies, such as e.g., quantum key distribution, quantum computation, and quantum metrology. 相似文献
Ageing processes of vehicle catalytic converters inevitably lead to the release of Pt and Pd into the environment, road dust being the main sink. Though Pt and Pd are contained in catalytic converters in nanoparticulate metallic form, under environmental conditions, they can be transformed into toxic dissolved species. In the present work, the distribution of Pt and Pd between dissolved, nanoparticulate, and microparticulate fractions of Moscow road dust is assessed. The total concentrations of Pt and Pd in dust vary in the ranges 9–142 ng (mean 35) and 155–456 (mean 235) ng g−1, respectively. The nanoparticulate and dissolved species of Pt and Pd in dust were studied using single particle inductively coupled plasma mass spectrometry. The median sizes of nanoparticulate Pt and Pd were 7 and 13 nm, respectively. The nanoparticulate fraction of Pt and Pd in Moscow dust is only about 1.6–1.8%. The average contents of dissolved fraction of Pt and Pd are 10.4% and 4.1%, respectively. The major fractions of Pt and Pd (88–94%) in road dust are associated with microparticles. Although the microparticulate fractions of Pt and Pd are relatively stable, they may become dissolved under changing environmental conditions and, hence, transformed into toxic species. 相似文献