首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   447145篇
  免费   4454篇
  国内免费   1274篇
化学   229957篇
晶体学   7018篇
力学   20444篇
综合类   10篇
数学   51809篇
物理学   143635篇
  2021年   3948篇
  2020年   4297篇
  2019年   4738篇
  2018年   6433篇
  2017年   6644篇
  2016年   9390篇
  2015年   5554篇
  2014年   8894篇
  2013年   20794篇
  2012年   16264篇
  2011年   19552篇
  2010年   14210篇
  2009年   14090篇
  2008年   17813篇
  2007年   17493篇
  2006年   16421篇
  2005年   14437篇
  2004年   13289篇
  2003年   11870篇
  2002年   11774篇
  2001年   14390篇
  2000年   10659篇
  1999年   8288篇
  1998年   6669篇
  1997年   6526篇
  1996年   6175篇
  1995年   5449篇
  1994年   5364篇
  1993年   5139篇
  1992年   5890篇
  1991年   6087篇
  1990年   5757篇
  1989年   5668篇
  1988年   5349篇
  1987年   5520篇
  1986年   5152篇
  1985年   6537篇
  1984年   6613篇
  1983年   5480篇
  1982年   5557篇
  1981年   5167篇
  1980年   5122篇
  1979年   5571篇
  1978年   5644篇
  1977年   5627篇
  1976年   5505篇
  1975年   5242篇
  1974年   5133篇
  1973年   5202篇
  1972年   3631篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
82.
The phase behavior of binary blends of poly(ether ether ketone) (PEEK), sulfonated PEEK, and sulfamidated PEEK with aromatic polyimides is reported. PEEK was determined to be immiscible with a poly(amide imide) (TORLON 4000T). Blends of sulfonated and sulfamidated PEEK with this poly(amide imide), however, are reported here to be miscible in all proportions. Blends of sulfonated PEEK and a poly(ether imide) (ULTEM 1000) are also reported to be miscible. Spectroscopic investigations of the intermolecular interactions suggest that formation of electron donoracceptor complexes between the sulfonated/sulfamidated phenylene rings of the PEEKs and the n-phenylene units of the polyimides are responsible for this miscibility. © 1993 John Wiley & Sons, Inc.  相似文献   
83.
Solutions are presented for the impulsively started uniformstream and simple shear flows past a point source of momentum,which can be interpreted to describe the position and the widthof the front which transmits the knowledge of the singularitythrough a slightly viscous fluid. These understandings are thengeneralized to show that the front always moves with velocityslower than that of a (strictly monotonic) convective velocity,and also that its width always grows faster than with simplediffusion. Finally, a remarkably simple, exact expression is given forvorticity due to a simple shear flow past a point vortex.  相似文献   
84.
85.
We report on the shape transition from InAs quantum dashes to quantum dots (QDs) on lattice-matched GaInAsP on InP(3 1 1)A substrates. InAs quantum dashes develop during chemical-beam epitaxy of 3.2 monolayers InAs, which transform into round InAs QDs by introducing a growth interruption without arsenic flux after InAs deposition. The shape transition is solely attributed to surface properties, i.e., increase of the surface energy and symmetry under arsenic deficient conditions. The round QD shape is maintained during subsequent GaInAsP overgrowth because the reversed shape transition from dot to dash is kinetically hindered by the decreased ad-atom diffusion under arsenic flux.  相似文献   
86.
We have prepared new polyesters containing quadratic, nonlinear optical (NLO) active chromophores covalently incorporated into the main chain. In these polymers, the sequence of the chromophore units along the main chain is rigorously head to tail. All the polyesters are processable, both in the melt and in solution. For one polyester, a full second‐order NLO characterization has been performed. An out‐of‐resonance d33 coefficient of 21 pm/V at 1368 nm has been measured. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2719–2725, 2007  相似文献   
87.
ε‐caprolactone was polymerized in the presence of neat montmorillonite or organomontmorillonites to obtain a variety of poly(ε‐caprolactone) (PCL)‐based systems loaded with 10 wt % of the silicates. The materials were thoroughly investigated by different X‐ray scattering techniques to determine factors affecting structure of the systems. For one of the nanocomposites it was found that varying the temperature in the range corresponding to crystallization of PCL causes reversible changes in the interlayer distance of the organoclay. Extensive experimental and literature studies on this phenomenon provided clues indicating that this effect might be a result of two‐dimensional ordering of PCL chains inside the galleries of the silicate. Small angle X‐ray scattering and wide angle X‐ray scattering investigation of filaments oriented above melting point of PCL revealed that polymer lamellae were oriented perpendicularly to particles of unmodified silicate, while in PCL/organoclay systems they were found parallel to clay tactoids. Calorimetric and microscopic studies shown that clay particles are effective nucleating agents. In the nanocomposites, PCL crystallized 20‐fold faster than in the neat polymer. The crystallization rate in nanocomposites was also significantly higher than in microcomposite. Further research provided an insight how the presence of the filler affects crystalline fraction and spherulitic structure of the polymer matrix in the investigated systems. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2350–2367, 2007  相似文献   
88.
89.
We theoretically investigated the mass dependence of the sympathetic cooling rate of gas-phase ions trapped in a linear radio-frequency-quadrupole ion trap. Using an a priori molecular dynamical calculation, tracing numerically with Newtonian equations of motion, we found that ions with a mass greater than 0.54±0.04 times that of the laser-cooled ions are sympathetically cooled; otherwise, they are heated. To understand the mass dependence obtained using the molecular-dynamical calculation, we made a heat-exchange model of sympathetic cooling, which shows that the factor of 0.54±0.04 is a consequence of absence of micro-motion along the axis of the linear ion trap. Received: 10 December 2001 / Revised version: 28 January 2002 / Published online: 14 March 2002  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号