首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   378篇
  免费   35篇
化学   323篇
晶体学   3篇
力学   7篇
数学   14篇
物理学   66篇
  2023年   4篇
  2022年   11篇
  2021年   13篇
  2020年   14篇
  2019年   15篇
  2018年   15篇
  2017年   10篇
  2016年   16篇
  2015年   15篇
  2014年   20篇
  2013年   17篇
  2012年   29篇
  2011年   34篇
  2010年   28篇
  2009年   27篇
  2008年   29篇
  2007年   22篇
  2006年   25篇
  2005年   13篇
  2004年   16篇
  2003年   8篇
  2002年   8篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1996年   2篇
  1994年   2篇
  1992年   3篇
  1991年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
排序方式: 共有413条查询结果,搜索用时 31 毫秒
101.
We have developed highly enantioselelctive reactions of silicon enolates with N-acyl-alpha-iminophosphonates leading to optically active alpha-amino phophonates. A copper (II)-diamine complex was shown to be effective in this reaction, and high levels of yield and selectivity were achieved. It is noteworthy that this reaction opens a way to various biologically important, optically active alpha-amino phosphonate derivatives.  相似文献   
102.
103.
A three-dimensionally insulated Pt(II) bis(dithiobenzoate) complex with a [1]rotaxane structure was synthesized using permethylated cyclodextrins. We have confirmed macrocyclic insulation is necessary to yield the Pt(II) bis(dithiobenzoate) complex with high selectivity. Furthermore, the formed Pt(II) complex showed highly stable and reversible two-step redox behavior in cyclic voltammetry due to the three-dimensional insulation.  相似文献   
104.
Objective: Neuromuscular electrical stimulation (NMES) has been noted as an effective pre- contraction for an increase of neural and muscle factors during twitch contractions. However, it is unknown if this intervention is effective for the rate of force development (RFD), which is the ability to increase joint torque strength as quickly as possible, during tetanic contractions. NMES can be safely used by anyone, but, the strength setting of NMES requires attention so as not to cause pain. Therefore, the purpose of this study investigated whether NMES at less painful levels was effective for RFD during tetanic contractions. We also investigated effect activation by analyzing electromyogram (EMG) and RFD for each phase. Methods: Eighteen healthy males were studied. Before and after NMES intervention at 10% or 20% maximal voluntary isometric contraction (MVIC) level (10%NMES, 20%NMES respectively), EMG activity and the initial phase (30-, 50-, 100-, and 200-msec) RFD were measured. Visual analog scale (VAS) was also measured as an indicator of pain during each NMES. Results: 20%NMES increased EMG activity and 30-, 50-, and 100-msec of RFD during MVIC, but could not improve 200 msec of RFD. However, 10%NMES could be failed to increase all phases RFD, but VAS was lower than that of 20% NMES. Conclusion: These results suggest that muscle pre-contraction using 20%NMES could induce moderate pain, but could be an effective intervention to improve RFD via neural factor activity.  相似文献   
105.
Furoxans are distinctive heteroaromatic compounds in that they are potentially capable of releasing nitric oxide under physiological conditions. In order to utilize the furoxan scaffold for the development of functional molecules, synthetically relevant functional groups are required for access to diverse furoxans. In this report, a facile route to furoxans with sulfonyloxy groups, which are halide surrogates, has been developed. The key features of this strategy include the synthesis and utilization of bench-stable hydroxyfuroxan salts, the use of sulfonyl anhydrides in the sulfonylation step instead of sulfonyl chlorides, and the photochemical isomerization of one regioisomer to another in order to gain access to both.  相似文献   
106.
ABSTRACT

Both micro-paired and conical support type double-stage diamond anvil cells (ds-DAC) were tested using a newly synthesized ultra-fine nano-polycrystalline diamond (NPD). Well-focused X-ray sub-micron beam and the conically supported 2nd stage anvils (micro-anvils) with 10?μm culet enable us to obtain good quality X-ray diffraction peaks from the sample at around 400?GPa. The relationship between confining pressure and sample pressure depends heavily on the initial height (thickness) of micro-anvils, the difference of a few micrometers leads to a quite different compression path. The conical support type is a solution to retain both enough thickness and strength of micro-anvils at higher confining pressure conditions. All conical support ds-DAC experiments terminated by the failure of the 1st stage anvil instead of 2nd one. The combination of ultra-fine NPD 2nd stage anvil and NPD 1st stage anvil opens a new frontier for measurement of the X-ray absorption spectrum above 300?GPa.  相似文献   
107.
Lithium phosphorus oxynitride (LiPON) is an amorphous solid-state lithium ion conductor displaying exemplary cyclability against lithium metal anodes. There is no definitive explanation for this stability due to the limited understanding of the structure of LiPON. Herein, we provide a structural model of RF-sputtered LiPON. Information about the short-range structure results from 1D and 2D solid-state NMR experiments. These results are compared with first principles chemical shielding calculations of Li-P-O/N crystals and ab initio molecular dynamics-generated amorphous LiPON models to unequivocally identify the glassy structure as primarily isolated phosphate monomers with N incorporated in both apical and as bridging sites in phosphate dimers. Structural results suggest LiPON′s stability is a result of its glassy character. Free-standing LiPON films are produced that exhibit a high degree of flexibility, highlighting the unique mechanical properties of glassy materials.  相似文献   
108.
Polymethylhydrosiloxane (PMHS) reacts with aliphatic and aromatic alcohols at room temperature in the presence of [CuH(PPh3)]6 complex catalyst to give poly[(methyl) (alkoxy)siloxane]s in high yields. Reactivity of alcohols decreases in the order of p‐methoxyphenol > p‐cresol > phenol > benzyl alcohol > allyl alcohol > ethanol > isopropanol > tert‐butyl alcohol. Partially p‐cresylated polymers, which still retain unreacted Si? H bonds, react further with ethylene glycol or water to form cross‐linked polymers, which, depending on the extent of cross linking, gelate during the cross‐linking process. Propargyl alcohol reacts with PMHS very rapidly to give exhaustively and partially propargyloxylated PMHS. Resulting polymers, upon heating, undergo crosslinking. Partially propargyloxylated polymers display high thermal stability [Td5 (temperature of 5% weight loss) > 500 °C] as compared with starting PMHS (243 °C) and exhaustively propargyloxylated one (414 °C). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
109.
Journal of Inclusion Phenomena and Macrocyclic Chemistry - Ketoprofen is a nonsteroidal anti-inflammatory drug used as mohrus tape which causes unwanted photosensitivity due to UV irradiation. In...  相似文献   
110.

Cellulose, the main component of plant cell walls, is degradable in nature. However, to the best of our knowledge, this is the first report that compares the biodegradability of cellulose fibers with different structures in natural waters. River water, brackish water, and seawater were collected from the Kamo River and Osaka Bay, Japan. Biodegradation of cellulose fibers with different structures and crystallinities, ramie, mercerized ramie, and regenerated cellulose fibers in the collected natural water was investigated in the dark at 20 °C for 30 days. The primary and aerobic ultimate biodegradability were evaluated by weight loss and biochemical oxygen demand (BOD) tests, respectively. In the weight-loss test, cellulose fibers were found to be degraded by more than 50% in any natural water within 30 days. However, in the BOD test, biodegradation was diminished, with values of 40%, 20–30%, and 2–10% in river water, brackish water, and seawater, respectively. These results indicate that cellulose fibers are easily degraded into fine fragments, but it is difficult to cause their ultimate decomposition into water and carbon dioxide. Existence of such a tendency in the degree of biodegradation among the cellulose fibers remains unclear. The molecular weight of cellulose fibers in natural water was also measured during their degradation. The degradation behavior in river water and seawater was observed to be different from that in brackish water. The results thus obtained indicate that the microorganisms and enzymes that degrade cellulose fibers differ depending on the natural water, which influences the degree and mechanism of biodegradation.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号