首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1026篇
  免费   93篇
  国内免费   5篇
化学   891篇
晶体学   8篇
力学   7篇
数学   82篇
物理学   136篇
  2023年   10篇
  2022年   9篇
  2021年   26篇
  2020年   37篇
  2019年   51篇
  2018年   33篇
  2017年   24篇
  2016年   50篇
  2015年   41篇
  2014年   64篇
  2013年   65篇
  2012年   89篇
  2011年   98篇
  2010年   39篇
  2009年   32篇
  2008年   74篇
  2007年   61篇
  2006年   65篇
  2005年   72篇
  2004年   59篇
  2003年   37篇
  2002年   38篇
  2001年   10篇
  2000年   6篇
  1999年   7篇
  1998年   3篇
  1997年   12篇
  1995年   2篇
  1994年   1篇
  1990年   2篇
  1989年   1篇
  1984年   1篇
  1981年   1篇
  1979年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1124条查询结果,搜索用时 15 毫秒
991.
A new host design for an inclusion compound with a preference for large planar aromatic guest molecules has been proposed. Our host design includes a rectangular cavity made using a long and a short building block based on the concept of supramolecular chemistry. The long building block facilitates the inclusion of large guests, and the short building block prevents the formation of an interpenetrated structure, which is often observed in frameworks with large void spaces. The long building block is made when dimers of 4-pyridinecarboxylic acid (isoH) form through hydrogen bonding between the two carboxylic acid moieties. This isoH dimer can link two transition metal centers using the N atoms at both ends to act as a long building block. For the short building block, the thiocyanato ion was used. This makes a bent bridge between two metal centers to form a 1D double-chain [M(SCN)2]infinity complex. From the self-assembly of isoH, SCN- and Ni2+, a 2D network of [Ni(SCN)2(isoH)2]infinity, in which the 1D [Ni(SCN)2]infinity complexes are linked by the isoH dimers, is built up. The rectangular cavity is formed as a mesh within the 2D network. The crystal of our inclusion compound has a layered structure of 2D networks, and a 1D channel-like cavity penetrating the layered 2D networks is formed where guests may be included. Moreover, our host design has the advantage of easy extension of the host structure. Replacement of isoH with another component and use of three components is possible for making the long building block. In the latter case, a linear spacer having two carboxy groups is inserted into the isoH dimer to form a long building block with a trimer structure. Based on our host design, a series of new inclusion compounds were synthesized. The crystal structures of three compounds were determined by single crystal X-ray diffraction. These were a biphenyl inclusion compound [Ni(SCN)2(isoH)2].1/2C12H10 (the basic case), a 9,10-dichloroanthracene inclusion compound [Ni(SCN)2(acrylH)2].1/2C14H8Cl2, where isoH is replaced with 3-(4-pyridinyl)-2-propenoic acid (acrylH), and a perylene inclusion compound [Ni(SCN)2(isoH)2(fumaricH2)].1/2C20H12, whose long building block is a trimer inserted with fumaric acid (fumaricH2) as a linear spacer.  相似文献   
992.
Selective oxidation of alcohols to the corresponding carbonyl compounds is one of the most fundamental reactions in organic synthesis. Traditional methods for this transformation generally rely on stoichiometric amount of oxidants represented by Cr(VI) or DMSO reagents, though their synthetic utility is encumbered by unpleasant waste materials. From ecological and atom-economic viewpoints, catalytic aerobic oxidation is much more advantageous because molecular oxygen is ubiquitous and the byproduct is basically non-toxic water or hydrogen peroxide. On the other hand, phenol derivatives undergo oxidative coupling, forming C-C or C-O bond, through radical intermediates coupled with an electron-transfer process. Molecular oxygen is also well known to serve as electron acceptor in this reaction. Thus, a variety of transition metal complexes have so far been examined for aerobic oxidations of alcohols and phenols, and high catalytic activities have been achieved in some cases. However, stereo- and chemo-selective aerobic oxidations are still limited in number and are of current interest. Presented in this paper is our recent studies on catalytic aerobic oxidations with photoactivated nitrosyl ruthenium-salen complexes, including asymmetric oxidation of secondary alcohols to ketones (kinetic resolution), enantioselective oxidative coupling of 2-naphthols to binaphthols and oxygen-radical bicyclization of 2,2'-dihydroxystilbene, chemoselective oxidation of primary alcohols to aldehydes and diols to lactols, and asymmetric desymmetrization of meso-diols to lactols.  相似文献   
993.
Self-oscillating nanogel particles   总被引:1,自引:0,他引:1  
  相似文献   
994.
The title compound, poly[diammine­hexa‐μ‐cyano‐di­copper(I)­copper(II)­mercury(II)], [Cu3Hg(CN)6(NH3)2]n, has a novel threefold‐inter­penetrating structure of three‐dimensional frameworks. This three‐dimensional framework consists of two‐dimensional network Cu3(CN)4(NH3)2 complexes and rod‐like Hg(CN)2 complexes. The two‐dimensional network complex contains trigonal–planar CuI (site symmetry m) and octa­hedral CuII (site symmetry 2/m) in a 2:1 ratio. Two types of cyanide group form bridges between three coordination sites of CuI and two equatorial sites of CuII to form a two‐dimensional structure with large hexa­gonal windows. One type of CN group is disordered across a center of inversion, while the other resides on the mirror plane. Two NH3 mol­ecules (site symmetry 2) are located in the hexa­gonal windows and coordinate to the remaining equatorial sites of CuII. Both N atoms of the rod‐like Hg(CN)2 group (Hg site symmetry 2/m and CN site symmetry m) coordinate to the axial sites of CuII. This linkage completes the three‐dimensional framework and penetrates two hexa­gonal windows of two two‐dimensional network complexes to form the threefold‐inter­penetrating structure.  相似文献   
995.
The total synthesis of onchidin ( 1 ), a cytotoxic, C2‐symmetric cyclic decadepsipeptide from a marine mollusc, according to the published structure, is described. A novel β‐amino acid, (2S,3S)‐3‐amino‐2‐methyl‐7‐octynoic acid (AMO), was efficiently prepared in high yield with high diastereo‐ and enantioselectivity based on a catalytic asymmetric three‐component Mannich‐type reaction with a chiral zirconium catalyst. The formation of sterically unfavorable N‐methyl amide and hindered ester bonds were successfully demonstrated, and final macrocyclization was achieved at a secondary‐amide site. Completion of the synthesis of 1 suggested that a revision of the structure of the natural product is required. Two diastereomers were also synthesized as candidates for the actual structure of onchidin. Furthermore, efficient solid‐phase methods were employed for the combinatorial synthesis of other derivatives to clarify the real structure of onchidin. The solid‐phase assembly of a pentadepsipeptide containing all the building blocks was established followed by dimeric cyclization in solution.  相似文献   
996.
In our preliminary communication (Ogo, S.; Wada, S.; Watanabe, Y.; Iwase, M.; Wada, A.; Harata, M.; Jitsukawa, K.; Masuda, H.; Einaga, H. Angew. Chem., Int. Ed. 1998, 37, 2102-2104), we reported the first example of X-ray analysis of a mononuclear six-coordinate (hydroxo)iron(III) non-heme complex, [Fe(III)(tnpa)(OH)(RCO(2))]ClO(4) [tnpa = tris(6-neopentylamino-2-pyridylmethyl)amine; for 1, R = C(6)H(5)], which has a characteristic cis (hydroxo)-Fe(III)-(carboxylato) configuration that models the cis (hydroxo)-Fe(III)-(carboxylato) moiety of the proposed (hydroxo)iron(III) species of lipoxygenases. In this full account, we report structural and spectroscopic characterization of the cis (hydroxo)-Fe(III)-(carboxylato) configuration by extending the model complexes from 1 to [Fe(III)(tnpa)(OH)(RCO(2))]ClO(4) (2, R = CH(3); 3, R = H) whose cis (hydroxo)-Fe(III)-(carboxylato) moieties are isotopically labeled by (18)OH(-), (16)OD(-), (18)OD(-), (12)CH(3)(12)C(18)O(2)(-), (12)CH(3)(13)C(16)O(2)(-), (13)CH(3)(12)C(16)O(2)(-), (13)CH(3)(13)C(16)O(2)(-), and H(13)C(16)O(2)(-). Complexes 1-3 are characterized by X-ray analysis, IR, EPR, and UV-vis spectroscopy, and electrospray ionization mass spectrometry (ESI-MS).  相似文献   
997.
998.
999.
In this paper, we formally prove that padding the plaintext with a random bit-string provides the semantic security against chosen plaintext attack (IND-CPA) for the McEliece (and its dual, the Niederreiter) cryptosystems under the standard assumptions. Such padding has recently been used by Suzuki, Kobara and Imai in the context of RFID security. Our proof relies on the technical result by Katz and Shin from Eurocrypt ’05 showing “pseudorandomness” implied by the learning parity with noise (LPN) problem. We do not need the random oracles as opposed to the known generic constructions which, on the other hand, provide a stronger protection as compared to our scheme—against (adaptive) chosen ciphertext attack, i.e., IND-CCA(2). In order to show that the padded version of the cryptosystem remains practical, we provide some estimates for suitable key sizes together with corresponding workload required for successful attack.  相似文献   
1000.
Eight kinds of imidazolate-bridged copper(II) complexes were found to be classified into two categories from the magnetic properties. The crystal structures of [Cu(L)(μ-im)]n (Him = imidazole; L = nonane-4,6-dionate, 2,6-dimethylheptane-3,5-dionate) and [Cu(L)(μ-im)]4 (L = nonane-4,6-dionate, 1-phenylbutane-1,3-dionate) were determined, to reveal that they consist of polymeric chains and tetranuclear cycles, respectively. Note that the nonane-4,6-dionate derivative gave the two phases. The Bonner–Fisher model (a one-dimensional antiferromagnetic chain model) was plausibly applied to [Cu(L)(μ-im)]n for the best fit, while a square model was to [Cu(L)(μ-im)]4. The complexes with unknown crystal structures were also subjected to magnetic measurements, and the tetra- and polymeric structures could be clearly distinguished from each other by fitting the magnetic data to appropriate models. The exchange parameters were comparable for both series (2J/kB = ?78 to ?97 K) because the structurally common bridges Cu–N(eq)–N(eq)–Cu afford comparable magnitudes of couplings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号