全文获取类型
收费全文 | 104篇 |
免费 | 1篇 |
专业分类
化学 | 75篇 |
数学 | 2篇 |
物理学 | 28篇 |
出版年
2023年 | 1篇 |
2022年 | 2篇 |
2018年 | 4篇 |
2017年 | 2篇 |
2016年 | 2篇 |
2015年 | 2篇 |
2014年 | 1篇 |
2013年 | 1篇 |
2012年 | 5篇 |
2011年 | 13篇 |
2010年 | 1篇 |
2009年 | 4篇 |
2008年 | 8篇 |
2007年 | 7篇 |
2006年 | 7篇 |
2005年 | 5篇 |
2004年 | 1篇 |
2003年 | 2篇 |
2002年 | 3篇 |
2001年 | 4篇 |
1999年 | 2篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1994年 | 1篇 |
1991年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 2篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1975年 | 2篇 |
1973年 | 2篇 |
1939年 | 1篇 |
1938年 | 1篇 |
1936年 | 1篇 |
1933年 | 1篇 |
1932年 | 2篇 |
1931年 | 1篇 |
1930年 | 1篇 |
排序方式: 共有105条查询结果,搜索用时 15 毫秒
61.
62.
63.
Fe-only hydrogenases are enzymes that catalyze dihydrogen production or oxidation, due to the presence of an unusual Fe(6)S(6) cluster (the so-called H-cluster) in their active site, which is composed of a Fe(2)S(2) subsite, directly involved in catalysis, and a classical Fe(4)S(4) cubane cluster. Here, we present a hybrid quantum mechanical and molecular mechanical (QM/MM) investigation of the Fe-only hydrogenase from Desulfovibrio desulfuricans, in order to unravel key issues regarding the activation of the enzyme from its completely oxidized inactive state (Hoxinact) and the influence of the protein environment on the structural and catalytic properties of the H-cluster. Our results show that the Fe(2)S(2) subcluster in the Fe(II)Fe(II) redox state - which is experimentally observed for the completely oxidized form of the enzyme - binds a water molecule to one of its metal centers. The computed QM/MM energy values for water binding to the diferrous subsite are in fact over 70 kJ mol(-1); however, the affinity toward water decreases by 1 order of magnitude after a one-electron reduction of H(ox)(inact), thus leading to the release of coordinated water from the H-cluster. The investigation of a catalytic cycle of the Fe-only hydrogenase that implies formation of a terminal hydride ion and a di(thiomethyl)amine (DTMA) molecule acting as an acid/base catalyst indicates that all steps have reasonable reaction energies and that the influence of the protein on the thermodynamic profile of H(2) production catalysis is not negligible. QM/MM results show that the interactions between the Fe(2)S(2) subsite and the protein environment could give place to structural rearrangements of the H-cluster functional for catalysis, provided that the bidentate ligand that bridges the iron atoms in the binuclear subsite is actually a DTMA residue. 相似文献
64.
Mikulskis P Genheden S Rydberg P Sandberg L Olsen L Ryde U 《Journal of computer-aided molecular design》2012,26(5):527-541
We have estimated affinities for the binding of 34 ligands to trypsin and nine guest molecules to three different hosts in the SAMPL3 blind challenge, using the MM/PBSA, MM/GBSA, LIE, continuum LIE, and Glide score methods. For the trypsin challenge, none of the methods were able to accurately predict the experimental results. For the MM/GB(PB)SA and LIE methods, the rankings were essentially random and the mean absolute deviations were much worse than a null hypothesis giving the same affinity to all ligand. Glide scoring gave a Kendall's τ index better than random, but the ranking is still only mediocre, τ = 0.2. However, the range of affinities is small and most of the pairs of ligands have an experimental affinity difference that is not statistically significant. Removing those pairs improves the ranking metric to 0.4-1.0 for all methods except CLIE. Half of the trypsin ligands were non-binders according to the binding assay. The LIE methods could not separate the inactive ligands from the active ones better than a random guess, whereas MM/GBSA and MM/PBSA were slightly better than random (area under the receiver-operating-characteristic curve, AUC = 0.65-0.68), and Glide scoring was even better (AUC = 0.79). For the first host, MM/GBSA and MM/PBSA reproduce the experimental ranking fairly good, with τ = 0.6 and 0.5, respectively, whereas the Glide scoring was considerably worse, with a τ = 0.4, highlighting that the success of the methods is system-dependent. 相似文献
65.
Greco C Bruschi M Fantucci P Ryde U De Gioia L 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(6):1954-1965
The presence of Fe‐bound cyanide ligands in the active site of the proton‐reducing enzymes [FeFe]‐hydrogenases has led to the hypothesis that such Brønsted–Lowry bases could be protonated during the catalytic cycle, thus implying that hydrogen isocyanide (HNC) might have a relevant role in such crucial microbial metabolic paths. We present a hybrid quantum mechanical/molecular mechanical (QM/MM) study of the energetics of CN? protonation in the enzyme, and of the effects that cyanide protonation can have on [FeFe]‐hydrogenase active sites. A detailed analysis of the electronic properties of the models and of the energy profile associated with H2 evolution clearly shows that such protonation is dysfunctional for the catalytic process. However, the inclusion of the protein matrix surrounding the active site in our QM/MM models allowed us to demonstrate that the amino acid environment was finely selected through evolution, specifically to lower the Brønsted–Lowry basicity of the cyanide ligands. In fact, the conserved hydrogen‐bonding network formed by these ligands and the neighboring amino acid residues is able to impede CN? protonation, as shown by the fact that the isocyanide forms of [FeFe]‐hydrogenases do not correspond to stationary points on the enzyme QM/MM potential‐energy surface. 相似文献
66.
H. J. Jensen G. B. Hagemann P. O. Tjøm S. Frauendorf A. Atac M. Bergström A. Bracco A. Brockstedt H. Carlsson P. Ekström J. M. Espino B. Herskind F. Ingebretsen J. Jongman S. Leoni R. M. Lieder T. Lönnroth A. Maj B. Million A. Nordlund J. Nyberg M. Piiparinen H. Ryde M. Sugawara A. Virtanen 《Zeitschrift für Physik A Hadrons and Nuclei》1991,340(4):351-362
The strongly shape driving πh9/2[541]l/2? configuration with α=+1/2 exhibits some anomalous, and so far unexplained, features concerning the crossing frequency, ?ωc, the aligned angular momentum, ix, and interaction strength, at the alignment of the first pair of i13/2 quasineutrons in several odd-Z rare earth-nuclei. The h9/2[541]1/2? and h11/2[523]7/2? bands have been studied in the stably deformed rare-earth nucleus163Tm to investigate these features. A difference in band crossing frequency of ~ 80 keV between the two bands is found. Rotational bands built on these two configurations have been found to cross in the spin range I=25/2–29/2 ?. Theγ-decay pattern between the two bands is established in the crossing region and analysed in terms of a moderate shape difference between them. A theoretical estimate of the size of the interaction strength between the two bands is presented and compared to the experimental value. The observed band structure in163Tm is very similar to that of167Lu which has 2 protons and 2 neutrons in addition. This observation is discussed in relation to the similarity of the yrast bands of the two even-even “core” nuclei162Er and166Yb, for which theγ-transition energies are identical within ~0.2 keV below the vi13/2 crossing. 相似文献
67.
68.
69.
The most general way to improve the accuracy of binding‐affinity calculations for protein–ligand systems is to use quantum‐mechanical (QM) methods together with rigorous alchemical‐perturbation (AP) methods. We explore this approach by calculating the relative binding free energy of two synthetic disaccharides binding to galectin‐3 at a reasonably high QM level (dispersion‐corrected density functional theory with a triple‐zeta basis set) and with a sufficiently large QM system to include all short‐range interactions with the ligand (744–748 atoms). The rest of the protein is treated as a collection of atomic multipoles (up to quadrupoles) and polarizabilities. Several methods for evaluating the binding free energy from the 3600 QM calculations are investigated in terms of stability and accuracy. In particular, methods using QM calculations only at the endpoints of the transformation are compared with the recently proposed non‐Boltzmann Bennett acceptance ratio (NBB) method that uses QM calculations at several stages of the transformation. Unfortunately, none of the rigorous approaches give sufficient statistical precision. However, a novel approximate method, involving the direct use of QM energies in the Bennett acceptance ratio method, gives similar results as NBB but with better precision, ~3 kJ/mol. The statistical error can be further reduced by performing a greater number of QM calculations. © 2015 Wiley Periodicals, Inc. 相似文献
70.
Various methods for deriving atomic partial charges from the quantum chemical electrostatic potential and moments have been tested for the sucrose molecule. We show that if no further information is used, the charges on some carbon atoms become large and charge patterns involving these atoms are badly determined and poorly transferable. Adding lone-pairs on the ether oxygen atoms or dividing the molecule into smaller fragments did not cure the instabilities. We develop a method, CHELP-BOW0, that restrains charges toward zero with different weights for different atoms. These harmonic restraints preserve the linear form of the least-squares equations, which are solved in a single step using singular-value decomposition. CHELP-BOW0 improves the chemical transferability of the charges compared to unrestrained methods, and slightly improves their conformational transferability. It introduces a modest degradation of the fit compared to unrestrained CHELP-BOW (mean average deviation of the potential 0.00016 vs. 0.00010 a.u.). A second new method, CHELP-BOWC, avoids the need for restraints by including several conformations in the fit, weighting each according to its estimated energy in solution. CHELP-BOWC charges are more transferable than CHELP-BOW or CHELP-BOW0 charges to conformations not included in the training set. Restraints to zero charge do not further improve transferability of the CHELP-BOWC charges. We, therefore, recommend CHELP-BOW charges for rigid molecules and CHELP-BOWC charges for flexible molecules. 相似文献