首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3329篇
  免费   152篇
  国内免费   21篇
化学   2494篇
晶体学   13篇
力学   87篇
数学   380篇
物理学   528篇
  2023年   48篇
  2022年   55篇
  2021年   74篇
  2020年   119篇
  2019年   99篇
  2018年   69篇
  2017年   44篇
  2016年   110篇
  2015年   83篇
  2014年   101篇
  2013年   152篇
  2012年   265篇
  2011年   361篇
  2010年   134篇
  2009年   118篇
  2008年   214篇
  2007年   184篇
  2006年   202篇
  2005年   144篇
  2004年   137篇
  2003年   107篇
  2002年   80篇
  2001年   37篇
  2000年   60篇
  1999年   29篇
  1998年   25篇
  1997年   12篇
  1996年   26篇
  1995年   14篇
  1994年   13篇
  1993年   34篇
  1992年   26篇
  1991年   22篇
  1990年   22篇
  1989年   16篇
  1988年   21篇
  1987年   16篇
  1986年   20篇
  1985年   22篇
  1984年   22篇
  1983年   12篇
  1982年   15篇
  1981年   11篇
  1980年   10篇
  1979年   12篇
  1978年   12篇
  1977年   9篇
  1976年   9篇
  1975年   10篇
  1973年   11篇
排序方式: 共有3502条查询结果,搜索用时 15 毫秒
131.
Given the consensus that pressure improves cation ordering in most of known materials, a discovery of pressure-induced disordering could require recognition of an order–disorder transition in solid-state physics/chemistry and geophysics. Double perovskites Y2CoIrO6 and Y2CoRuO6 polymorphs synthesized at 0, 6, and 15 GPa show B-site ordering, partial ordering, and disordering, respectively, accompanied by lattice compression and crystal structure alteration from monoclinic to orthorhombic symmetry. Correspondingly, the long-range ferrimagnetic ordering in the B-site ordered samples are gradually overwhelmed by B-site disorder. Theoretical calculations suggest that unusual unit-cell compressions under external pressures unexpectedly stabilize the disordered phases of Y2CoIrO6 and Y2CoRuO6.  相似文献   
132.
Continued efforts are made for the utilization of CO2 as a C1 feedstock for regeneration of valuable chemicals and fuels. Mechanistic study of molecular (electro-/photo-)catalysts disclosed that initial step for CO2 activation involves either nucleophilic insertion or direct reduction of CO2. In this study, nucleophilic activation of CO2 by complex [(NO)2Fe(μ-MePyr)2Fe(NO)2]2− ( 2 , MePyr=3-methylpyrazolate) results in the formation of CO2-captured complex [(NO)2Fe(MePyrCO2)] ( 2-CO2 , MePyrCO2=3-methyl-pyrazole-1-carboxylate). Single-crystal structure, spectroscopic, reactivity, and computational study unravels 2-CO2 as a unique intermediate for reductive transformation of CO2 promoted by Ca2+. Moreover, sequential reaction of 2 with CO2, Ca(OTf)2, and KC8 established a synthetic cycle, 2 → 2-CO2 → [(NO)2Fe(μ-MePyr)2Fe(NO)2] ( 1 ) → 2 , for selective conversion of CO2 into oxalate. Presumably, characterization of the unprecedented intermediate 2-CO2 may open an avenue for systematic evaluation of the effects of alternative Lewis acids on reduction of CO2.  相似文献   
133.
Ultraviolet B (UVB) radiation is known as a culprit in skin carcinogenesis. We have previously reported that bucillamine (N-[2-mercapto-2-methylpropionyl]-L-cysteine), a cysteine derivative with antioxidant and anti-inflammatory capacity, protects against UVB-induced p53 activation and inflammatory responses in mouse skin. Since MAPK signaling pathways regulate p53 expression and activation, here we determined bucillamine effect on UVB-mediated MAPK activation in vitro using human skin keratinocyte cell line HaCaT and in vivo using SKH-1 hairless mouse skin. A single low dose of UVB (30 mJ cm−2) resulted in increased JNK/MAPK phosphorylation and caspase-3 cleavage in HaCaT cells. However, JNK activation and casaspe-3 cleavage were inhibited by pretreatment of HaCaT cells with physiological doses of bucillamine (25 and 100 µm ). Consistent with these results, bucillamine pretreatment in mice (20 mg kg−1) inhibited JNK/MAPK and ERK/MAPK activation in skin epidermal cells at 6–12 and 24 h, respectively, after UVB exposure. Moreover, bucillamine attenuated UVB-induced Ki-67-positive cells and cleaved caspase-3-positive cells in mouse skin. These findings demonstrate that bucillamine inhibits UVB-induced MAPK signaling, cell proliferation and apoptosis. Together with our previous report, we provide evidence that bucillamine has a photoprotective effect against UV exposure.  相似文献   
134.
Photodynamic therapy (PDT) has long been shown to be a powerful therapeutic modality for cancer. However, PDT is undiversified and has become stereotyped in recent years. Exploration of distinctive PDT methods is thus highly in demand but remains a severe challenge. Herein, an unprecedented 1+1+1>3 synergistic strategy is proposed and validated for the first time. Three homologous luminogens with aggregation‐induced emission (AIE) characteristics were rationally designed based on a simple backbone. Through slight structural tuning, these far‐red/near‐infrared AIE luminogens are capable of specifically anchoring to mitochondria, cell membrane, and lysosome, and effectively generating reactive oxygen species (ROS). Notably, biological studies demonstrated combined usage of three AIE photosensitizers gives multiple ROS sources simultaneously derived from several organelles, which gives superior therapeutic effect than that from a single organelle at the same photosensitizers concentration. This strategy is conceptually and operationally simple, providing an innovative approach and renewed awareness of improving therapeutic effect through three‐pronged PDT.  相似文献   
135.
Given the consensus that pressure improves cation ordering in most of known materials, a discovery of pressure‐induced disordering could require recognition of an order–disorder transition in solid‐state physics/chemistry and geophysics. Double perovskites Y2CoIrO6 and Y2CoRuO6 polymorphs synthesized at 0, 6, and 15 GPa show B‐site ordering, partial ordering, and disordering, respectively, accompanied by lattice compression and crystal structure alteration from monoclinic to orthorhombic symmetry. Correspondingly, the long‐range ferrimagnetic ordering in the B‐site ordered samples are gradually overwhelmed by B‐site disorder. Theoretical calculations suggest that unusual unit‐cell compressions under external pressures unexpectedly stabilize the disordered phases of Y2CoIrO6 and Y2CoRuO6.  相似文献   
136.
137.
Strain engineering can increase the activity and selectivity of an electrocatalyst. Tensile strain is known to improve the electrocatalytic activity of palladium electrodes for reduction of carbon dioxide or dioxygen, but determining how strain affects the hydrogen evolution reaction (HER) is complicated by the fact that palladium absorbs hydrogen concurrently with HER. We report here a custom electrochemical cell, which applies tensile strain to a flexible working electrode, that enabled us to resolve how tensile strain affects hydrogen absorption and HER activity for a thin film palladium electrocatalyst. When the electrodes were subjected to mechanically‐applied tensile strain, the amount of hydrogen that absorbed into the palladium decreased, and HER electrocatalytic activity increased. This study showcases how strain can be used to modulate the hydrogen absorption capacity and HER activity of palladium.  相似文献   
138.
Lithium–sulfur batteries have great potential as next-generation energy-storage devices because of their high theoretical charge-storage capacity and the low cost of the sulfur cathode. To accelerate the development of lithium–sulfur technology, it is necessary to address the intrinsic material and extrinsic technological challenges brought about by the insulating active solid-state materials and the soluble active liquid-state materials. Herein, we report a systematic investigation of module-designed carbon-coated separators, where the carbon coating layer on the polypropylene membrane decreases the irreversible loss of dissolved polysulfides and increases the reaction kinetics of the high-loading sulfur cathode. Eight different conductive carbon coatings were considered to investigate how the materials’ characteristics contribute to the lithium–sulfur cell’s cathode performance. The cell with a nonporous-carbon-coated separator delivered an optimized peak capacity of 1112 mA∙h g−1 at a cycling rate of C/10 and retained a high reversible capacity of 710 mA∙h g−1 after 200 cycles under lean-electrolyte conditions. Moreover, we demonstrate the practical high specific capacity of the cathode and its commercial potential, achieving high sulfur loading and content of 4.0 mg cm−2 and 70 wt%, respectively, and attaining high areal and gravimetric capacities of 4.45 mA∙h cm−2 and 778 mA∙h g−1, respectively.  相似文献   
139.

Multiphase flow in porous media is strongly influenced by the pore-scale arrangement of fluids. Reservoir-scale constitutive relationships capture these effects in a phenomenological way, relying only on fluid saturation to characterize the macroscopic behavior. Working toward a more rigorous framework, we make use of the fact that the momentary state of such a system is uniquely characterized by the geometry of the pore-scale fluid distribution. We consider how fluids evolve as they undergo topological changes induced by pore-scale displacement events. Changes to the topology of an object are fundamentally discrete events. We describe how discontinuities arise, characterize the possible topological transformations and analyze the associated source terms based on geometric evolution equations. Geometric evolution is shown to be hierarchical in nature, with a topological source term that constrains how a structure can evolve with time. The challenge associated with predicting topological changes is addressed by constructing a universal geometric state function that predicts the possible states based on a non-dimensional relationship with two degrees of freedom. The approach is validated using fluid configurations from both capillary and viscous regimes in ten different porous media with porosity between 0.10 and 0.38. We show that the non-dimensional relationship is independent of both the material type and flow regime. We demonstrate that the state function can be used to predict history-dependent behavior associated with the evolution of the Euler characteristic during two-fluid flow.

  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号