首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1469篇
  免费   42篇
  国内免费   12篇
化学   964篇
晶体学   9篇
力学   35篇
数学   207篇
物理学   308篇
  2023年   15篇
  2022年   10篇
  2021年   24篇
  2020年   32篇
  2019年   23篇
  2018年   21篇
  2016年   29篇
  2015年   23篇
  2014年   25篇
  2013年   69篇
  2012年   88篇
  2011年   92篇
  2010年   52篇
  2009年   59篇
  2008年   74篇
  2007年   91篇
  2006年   86篇
  2005年   77篇
  2004年   51篇
  2003年   37篇
  2002年   32篇
  2001年   16篇
  2000年   20篇
  1999年   22篇
  1998年   12篇
  1997年   16篇
  1996年   14篇
  1995年   19篇
  1994年   15篇
  1993年   26篇
  1992年   26篇
  1991年   25篇
  1990年   13篇
  1989年   10篇
  1988年   17篇
  1987年   12篇
  1986年   10篇
  1985年   21篇
  1984年   18篇
  1983年   9篇
  1982年   16篇
  1981年   23篇
  1980年   13篇
  1979年   6篇
  1978年   15篇
  1977年   13篇
  1976年   20篇
  1975年   8篇
  1974年   18篇
  1973年   6篇
排序方式: 共有1523条查询结果,搜索用时 15 毫秒
991.
Synthesis and Solid State Structure of the Coordination Polymer {Zn[Sn(CH2SMe)4]0.5Cl2}n The tin compounds Sn(CH2SMe)4 and Sn(CH2PPh2)4 are accessible from reaction of SnCl4 with LiCH2SMe and LiCH2PPh2, respectively. X‐ray quality crystals of Sn(CH2PPh2)4 (tetragonal, ) are obtained from a benzene solution at 4 °C. The lithium methanide [Li(PMDTA)CH2PPh2], which was a starting material in the synthesis of Sn(CH2PPh2)4 crystallized from a mixture of diethyl ether and pentane at ?20 °C in the monoclinic space group P21/c. The coordination polymer {Zn[Sn(CH2SMe)4]0.5Cl2}n was synthesized from Sn(CH2SMe)4 and ZnCl2 in benzene. The solid state structure of this coordination polymer reveals that {Zn[Sn(CH2SMe)4]0.5Cl2}n possesses an infinite [Zn‐SMe‐CH2‐Sn‐CH2‐SMe‐]‐chain as its backbone (monoclinic P21/c).  相似文献   
992.
High Forchheimer number flow through a rigid porous medium is numerically analysed by means of the volumetric averaging concept. The microscopic flow mechanisms, which must be known in order to understand the macroscopic flow phenomena, are studied by utilising a periodic diverging-converging representative unit cell (RUC). The detailed information for the microscopic flow field, in association with the locally averaged momentum balance, makes it possible to quantitatively demonstrate that the microscopic inertial phenomenon, which leads to distorted velocity and pressure fields, is the fundamental reason for the onset of nonlinear (non-Darcy) effects as velocity increases. The hydrodynamic definitions for Darcy's law permeabilityk, the inertial coefficient and Forchheimer number Fo are obtained by applying the averaging theorem to the pore level Navier-Stokes equations. Finally, these macroscopic parameters are numerically calculated at various combinations of micro-geometry and flow rate, and graphically correlated with the relevant microscopic parameters.Nomenclature a i body force acceleration (m/s2) - A viscous integral term defined in (4.6) - A f area of entrance and exist of RUC (m2) - A fs interfacial area between the fluid and solid phases (m2) - B pressure integral term defined in (4.4) - d throat diameter of RUC (m) - D pore diameter of RUC (m) - Fo Forchheimer number defined in (4.1) and (4.10) - g gravitational acceleration (m/s2) - i, j microscopic unit vector for RUC - k Darcy's law permeability (m2) - k v velocity dependent permeability defined in (4.1) (m2) - L length of a unit cell (m) - L p pore length of RUC (m) - L t throat length of RUC (m) - n unit outwardly directed vector for the fluid phase - p microscopic fluid pressure (N/m2) - P macroscopic fluid pressure (N/m2) - en mean pressure at entrance of RUC (N/m2) - ex mean pressure at exit of RUC (N/m2) - r i,r coordinate on the macroscopic scale (m) - Re d Reynolds number defined in (4.5) - u i,u microscopic velocity (m/s) - specific discharge (m/s) - d mean velocity at the throat of RUC (m/s) - v microscopic velocity (m/s) - V b representative elementary volume (REV) (m3) - V f volume occupied by the fluid within REV (m3) - V s volume occupied by the solid within REV (m3) - x i,x coordinate on the microscopic scale (m) - X i,X coordinate on the macroscopic scale (m) Greek the inertia coefficient (1/m) - viscosity coefficient (Ns/m2) - i microscopic unit vector - areosity at the entrance and the exit cross-section of RUC - fluid density (kg/m3) - porosity - f a general property of the fluid phase Symbols f intrinsic phase average - the fluctuating part of f - the mean value of f - f * the dimensionless value of f  相似文献   
993.
994.
In this paper, results from a combined network/averaging study are presented. The emphasis is placed on understanding the flow phenomena, rather than predicting results for real porous media. Idealized porous media, consisting of networks of tubes, are used to interpret two of the terms in the averaged momentum equation. In particular, it is demonstrated that the pressure term accounts for microscopic cross flow, and that the magnitude of this term is proportional to the variation of the cross-sectional areas of the tubes in the macroscopic flow direction. For one-dimensional macroscopic flow in these idealized porous media, the agreement of network theory and averaging theory permeabilities depends on areosity (a term related to the area open to flow in a direction) remaining constant in the macroscopic flow direction; it may vary in other directions.  相似文献   
995.
Luminescent metallo‐intercalators are potent biosensors of nucleic acid structure and anticancer agents targeting DNAs. There are few examples of luminescent metallo‐intercalators which can simultaneously act as emission probes of nucleic acid structure and display promising anticancer activities. Herein, we describe a luminescent platinum(II) complex, [Pt(C^N^N)(C≡NtBu)]ClO4 ( 1 a , HC^N^N= 6‐phenyl‐2,2′‐bipyridyl), that intercalates between the nucleobases of nucleic acids, accompanied by an increase in emission intensity and/or a significant change in the maximum emission wavelength. The changes in emission properties measured with double‐stranded RNA (dsRNA) are different from those with dsDNA used in the binding reactions. Complex 1 a exhibited potent anticancer activity towards cancer cells in vitro and inhibited tumor growth in a mouse model. The stabilization of the topoisomerase I–DNA complex with resulting DNA damage by 1 a is suggested to contribute to its anticancer activity.  相似文献   
996.
997.
998.
Important physical concepts learned from early EPR studies of defects in silicon are reviewed. Highlighted are the studies of shallow effective-mass-like donors and acceptors by Feher, of deep transition-element impurities by Ludwig and Woodbury, and of vacancies and interstitials by Watkins et al. It is shown that the concepts learned in silicon translate remarkably well to corresponding defects in the other elemental and compound semiconductors. The introduction of sensitive optical and electrical detection methods during the intervening years, and the recent progress in single-defect detection insure the continued vital role of EPR in the future. Fiz. Tverd. Tela (St. Petersburg) 41, 826–830 (May 1999) Published in English in the original Russian journal. Reproduced here with stylistic changes by the Translation Editor.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号