首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   2篇
  国内免费   1篇
化学   84篇
晶体学   1篇
力学   3篇
数学   23篇
物理学   36篇
  2023年   1篇
  2022年   2篇
  2020年   1篇
  2019年   2篇
  2017年   3篇
  2016年   5篇
  2014年   2篇
  2013年   6篇
  2012年   9篇
  2011年   13篇
  2010年   4篇
  2009年   3篇
  2008年   7篇
  2007年   8篇
  2006年   6篇
  2005年   8篇
  2004年   3篇
  2003年   6篇
  2002年   4篇
  2001年   5篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   4篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1989年   1篇
  1987年   2篇
  1982年   2篇
  1980年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1966年   2篇
  1962年   2篇
  1937年   1篇
  1935年   1篇
  1930年   2篇
  1923年   1篇
  1915年   1篇
  1913年   2篇
  1911年   1篇
  1907年   1篇
  1905年   1篇
排序方式: 共有147条查询结果,搜索用时 515 毫秒
131.
Current research on xanthine oxidase has favored a mechanism involving base-catalyzed proton abstraction from a Mo-OH group, allowing nucleophilic attack on the substrate and hydride transfer from the substrate to Mo=S group in the active site. During the course of this reaction mechanism, the molybdenum redox cycles from MoVI to MoIV, with reoxidation of the MoIV speices to form the EPR active MoV intermediate. However, it has also been suggested that the reaction occurs in two subsequent one-electron steps. We have determined kinetic parameters kred and kred/Kd for a variety of plausible substrates as well as the one-electron reduction potentials for these substrates. Our data indicate no correlation between these kinetic parameters and their one-electron reduction potentials, as would be expected if the enzyme were using two subsequent one-electron reduction steps. Our results provide additional support to current evidence for the favored two-electron reduction mechanism.  相似文献   
132.
We use videomicroscopy to follow the phase-space trajectory of a two-dimensional colloidal model liquid and calculate three-point correlation functions from the measured particle configurations. Approaching the fluid-solid transition by increasing the strength of the pair-interaction potential, one observes the gradual formation of a crystal-like local order due to triplet correlations, while being still deep inside the fluid phase. Furthermore, we show that in a strongly interacting system the Born-Green equation can be satisfied only with the full triplet correlation function but not with three-body distribution functions obtained from superposing pair correlations (Kirkwood superposition approximation).  相似文献   
133.
Calculations for optical excitations in confined systems require knowledge of the inverse screening dielectric function epsilon(-1)(r,r(')), which plays a crucial role in determining exciton binding energies. We present a new efficient real-space method of inverting and storing large ab initio dielectric matrices of confined systems, which relies on the separability of epsilon matrix in r and r('). The method has allowed, for the first time, full ab initio calculation of epsilon(-1)(r,r(')) of dimension N approximately 270 000, and for quantum dots as large as Si35H36. The effective screening in Si quantum dots up to 1.1 nm in diameter is found to be very ineffective with average dielectric constants ranging from 1.1 to 1.4.  相似文献   
134.
Mono- or di-substituted cyclooctatetraenetricarbonyliron complexes on heating yield isomeric bicyclo[4.2.0]-2,4,7-octátriene compounds; in contrast, the carbonylruthenium analogues afford polynuclear species.  相似文献   
135.
We consider the equation $\text{ div}\,\mathbb{Y }=f$ , with $f$ a zero average function on the torus $\mathbb{T }^d$ . In their seminal paper, Bourgain and Brezis [J Am Math Soc 16(2):393–426, 2003 (electronic)] proved the existence of a solution $\mathbb{Y }\in W^{1,d}\cap L^\infty $ for a datum $f\in L^d$ . We extend their result to the critical Sobolev spaces $W^{s,p}$ with $(s+1)p=d$ and $p\ge 2$ . More generally, we prove a similar result in the scale of Triebel–Lizorkin spaces. We also consider the equation $\text{ div} \,\mathbb{Y }=f$ in a bounded domain $\varOmega $ subject to zero Dirichlet boundary condition.  相似文献   
136.
Sulfite oxidase from Arabidopsis thaliana has been reduced at pH = 6 with sulfite labeled with 33S (nuclear spin I = 3/2), followed by reoxidation by ferricyanide to generate the Mo(V) state of the active center. To obtain information about the hyperfine interaction (hfi) of 33S with Mo(V), continuous-wave electron paramagnetic resonance (EPR) and electron spin echo envelope modulation (ESEEM) experiments have been performed. The interpretation of the EPR and ESEEM spectra was facilitated by a theoretical analysis of the nuclear transition frequencies expected for the situation of the nuclear quadrupole interaction being much stronger than the Zeeman and hyperfine interactions. The isotropic hfi constant of 33S determined in these experiments was about 3 MHz, which demonstrates the presence of coordinated sulfate in the sulfite-reduced low-pH form of the plant enzyme.  相似文献   
137.
Xanthine oxidoreductase is a molybdenum-containing enzyme that catalyzes the hydroxylation reaction of sp(2)-hybridized carbon centers of a variety of substrates, including purines, aldehydes, and other heterocyclic compounds. The complex of arsenite-inhibited xanthine oxidase has been characterized previously by UV-vis, electron paramagnetic resonance, and X-ray absorption spectroscopy (XAS), and the catalytically essential sulfido ligand of the square-pyrimidal molybdenum center has been suggested to be involved in arsenite binding through either a μ-sulfido,μ-oxo double bridge or a single μ-sulfido bridge. However, this is contrary to the crystallographically observed single μ-oxo bridge between molybdenum and arsenic in the desulfo form of aldehyde oxidoreductase from Desulfovibrio gigas (an enzyme closely related to xanthine oxidase), whose molybdenum center has an oxo ligand replacing the catalytically essential sulfur, as seen in the functional form of xanthine oxidase. Here we use X-ray crystallography to characterize the molybdenum center of arsenite-inhibited xanthine oxidase and solve the structures of the oxidized and reduced inhibition complexes at 1.82 and 2.11 ? resolution, respectively. We observe μ-sulfido,μ-oxo double bridges between molybdenum and arsenic in the active sites of both complexes. Arsenic is four-coordinate with a distorted trigonal-pyramidal geometry in the oxidized complex and three-coordinate with a distorted trigonal-planar geometry in the reduced complex. The doubly bridged binding mode is in agreement with previous XAS data indicating that the catalytically essential sulfur is also essential for the high affinity of reduced xanthine oxidoreductase for arsenite.  相似文献   
138.
We describe the synthesis of a series of four different ligands which are used to prepare hydrophilic, biocompatible luminescent quantum dots (QDs) and gold nanoparticles (AuNPs). Overall, the ligands are designed to be compact while still imparting a zwitterionic character to the NPs. Ligands are synthesized appended to a bidentate dihydrolipoic acid- (DHLA) anchor group, allowing for high-affinity NP attachment, and simultaneously incorporate tertiary amines along with carboxyl and/or hydroxyl groups. These are placed in close proximity within the ligand structure and their capacity for joint ionization imparts the requisite zwitterionic nature to the nanocrystal. QDs functionalized with the four different compact ligands were subjected to extensive physical characterization including surface charge, wettability, hydrodynamic size, and tolerance to a wide pH range or high salt concentration over time. The utility of the compact ligand coated QDs was further examined by testing of direct conjugation to polyhistidine-appended protein and peptides, aqueous covalent-coupling chemistry, and the ability to engage in F?rster resonance energy transfer (FRET). Conjugating cell penetrating peptides to the compact ligand coated QD series facilitated their rapid and efficient cellular uptake, while subsequent cytotoxicity tests showed no apparent decreases in cell viability. In vivo biocompatibility was also demonstrated by microinjecting the compact ligand coated QDs into cells and monitoring their stability over time. Inherent benefits of the ligand design could be extended beyond QDs as AuNPs functionalized with the same compact ligand series showed similar colloidal properties. The strong potential of these ligands to expand NP capabilities in many biological applications is highlighted.  相似文献   
139.
Quantum dots (QDs) have shown promise as imaging agents in cancer, heart disease, and gene therapy research. This review focuses on the design of QDs, and modification using peptides and proteins for mediated targeting of tissues for fluorescence imaging of tumors in vivo. Recent examples from the literature are used to illustrate the potential of QDs as effective imaging agents. The distribution and ultimate fate of QDs in vivo is considered, and considerations of designs that minimize potential toxicity are presented.  相似文献   
140.
The optical properties and surface area of quantum dots (QDs) have made them an attractive platform for the development of nucleic acid biosensors based on fluorescence resonance energy transfer (FRET). Solid-phase assays based on FRET using mixtures of immobilized QD–oligonucleotide conjugates (QD biosensors) have been developed. The typical challenges associated with solid-phase detection strategies include non-specific adsorption, slow kinetics of hybridization, and sample manipulation. The new work herein has considered the immobilization of QD biosensors onto the surfaces of microfluidic channels in order to address these challenges. Microfluidic flow can be used to dynamically control stringency by adjustment of the potential in an electrokinetic-based microfluidics environment. The shearing force, Joule heating, and the competition between electroosmotic and electrophoretic mobilities allow the optimization of hybridization conditions, convective delivery of target to the channel surface to speed hybridization, amelioration of adsorption, and regeneration of the sensing surface. Microfluidic flow can also be used to deliver (for immobilization) and remove QD biosensors. QDs that were conjugated with two different oligonucleotide sequences were used to demonstrate feasibility. One oligonucleotide sequence on the QD was available as a linker for immobilization via hybridization with complementary oligonucleotides located on a glass surface within a microfluidic channel. A second oligonucleotide sequence on the QD served as a probe to transduce hybridization with target nucleic acid in a sample solution. A Cy3 label on the target was excited by FRET using green-emitting CdSe/ZnS QD donors and provided an analytical signal to explore this detection strategy. The immobilized QDs could be removed under denaturing conditions by disrupting the duplex that was used as the surface linker and thus allowed a new layer of QD biosensors to be re-coated within the channel for re-use of the microfluidic chip.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号