首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1722篇
  免费   307篇
  国内免费   175篇
化学   1377篇
晶体学   14篇
力学   88篇
综合类   4篇
数学   145篇
物理学   576篇
  2024年   5篇
  2023年   33篇
  2022年   30篇
  2021年   67篇
  2020年   64篇
  2019年   69篇
  2018年   60篇
  2017年   42篇
  2016年   86篇
  2015年   83篇
  2014年   83篇
  2013年   107篇
  2012年   154篇
  2011年   164篇
  2010年   106篇
  2009年   93篇
  2008年   132篇
  2007年   110篇
  2006年   113篇
  2005年   110篇
  2004年   70篇
  2003年   45篇
  2002年   63篇
  2001年   47篇
  2000年   43篇
  1999年   39篇
  1998年   21篇
  1997年   22篇
  1996年   16篇
  1995年   20篇
  1994年   14篇
  1993年   10篇
  1992年   12篇
  1991年   20篇
  1990年   13篇
  1989年   2篇
  1988年   3篇
  1987年   7篇
  1985年   3篇
  1984年   1篇
  1983年   6篇
  1982年   1篇
  1981年   1篇
  1980年   5篇
  1979年   1篇
  1978年   1篇
  1976年   3篇
  1974年   2篇
  1947年   1篇
  1946年   1篇
排序方式: 共有2204条查询结果,搜索用时 15 毫秒
941.
Novel kind of core-shell corona complex micelles were prepared, which enhanced both the hydrolytic stability and the photostability of water-soluble zinc tetrakis(4-sulfonatophenyl) porphyrin (ZnTPPS) in acidic aqueous solutions. The core-shell gold nanoparticles (AuNPS) were synthesized by reducing HAuCl4 and di-thioester terminated block copolymer, poly(Nisopropylacrylamide)-block-poly(4-vinylpyridine) (PNIPAM-b-P4VP). The complex micelles with gold core, P4VP/ZnTPPS shell and PNIPAM corona were formed by simple mixing of gold nanoparticles and ZnTPPS. The photochemical properties of the complex micelles were studied by UV–Visiblespectroscopy and fluorescence spectroscopy. The results showed trapping of ZnTPPS in the positively charged micellar shell that effectively prevented demetallation of the ZnTPPS that would occur in acidic aqueous solutions. Furthermore, with appropriate concentration of gold nanoparticles, ZnTPPS in the complex micelle had excellent photostability by suppression of generation of reactive oxygen species (ROS). The enhanced stability of ZnTPPS in acidic aqueous media could be extensively used for photocatalysis and in solar cells.  相似文献   
942.
In the literature, it is reported that the protonated ketotifen mainly undergoes C?C double bond cleavage in electrospray ionization tandem mass spectrometry (ESI‐MS/MS); however, there is no explanation on the mechanism of this fragmentation reaction. Therefore, we carried out a combined experimental and theoretical study on this interesting fragmentation reaction. The fragmentation of protonated ketotifen (m/z 310) always generated a dominant fragment ion at m/z 96 in different electrospray ionization mass spectrometers (ion trap, triple quadrupole and linear trap quadrupole (LTQ)‐orbitrap). The mechanism of the generation of this product ion (m/z 96) through the C?C double bond cleavage was proposed to be a sequential hydrogen migration process (including proton transfer, continuous two‐step 1,2‐hydride transfer and ion‐neutral complex‐mediated hydride transfer). This mechanism was supported by density functional theory (DFT) calculations and a deuterium labeling experiment. DFT calculations also showed that the formation of the product ion m/z 96 was most favorable in terms of energy. This study provides a reasonable explanation for the fragmentation of protonated ketotifen in ESI‐MS/MS, and the fragmentation mechanism is suitable to explain other C?C double bond cleavage reactions in mass spectrometry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
943.
A sensitive and selective method for the determination of procaine hydrochloride using molecularly imprinted polymers (MIPs) modified glassy carbon electrodes was developed. The MIPs were prepared by solution polymerization using procaine hydrochloride as the template molecules and acrylic acid (AA) and vinyltriethoxysilane (WD‐20) as the functional monomer and cross‐linking agent, respectively. A film was formed on the surface of the glassy carbon electrodes and later cross‐linked with ethanol as solvent. Next, these electrodes were employed to detect procaine hydrochloride by differential pulse voltammetry (DPV). Under the optimized conditions, good linearity (correlation coefficient of 0.9986) was observed between the oxidation peak current and the concentration of procaine hydrochloride in the range of 4.0×10?8 to 2.4×10?5 M in a pH 7.0 0.04 M phosphate buffer solution, and the detection limit (S/N=3) was 1.02×10?8 M. In addition, the stability and reproducibility of the sensors were satisfactory. Moreover, the concentration of procaine hydrochloride in human blood serum samples was detected, and its recoveries ranged from 97.5 % to 106.4 % with RSD less than 2.15 %. These results suggest that the prepared molecularly imprinted electrochemical sensors can be used for the determination of procaine in clinical studies.  相似文献   
944.
The interaction between a water-soluble polymer polyvinylpyrrolidone (PVP) and a gemini surfactant N,N'-didodecyl-N,N,N',N'-tetramethyl-N,N'-propanediyl-diammonium dibromide (G12-3-12) was investigated by means of NMR in a D2O solution at 298 K. The critical micelle concentration (СMC), critical aggregation concentration (СAC) and adsorption reached the saturated concentration (C2) were confirmed by chemical shift and self-diffusion coefficients, respectively. The results of the relaxation time ratio (TR = T2/T1) of G12-3-12 show that the motion of the ionic head N+–CH3* proton (G6) is seriously restricted, and thus, it can be proved that the cationic head groups are situated in the hydrophilic layer of the micelle. The size of the mixed-aggregates in the G12-3-12/PVP solution is larger than pure G12-3-12 micelles according to self-diffusion coefficients, indicating that the G12-3-12 and PVP has formed mixed micelles, and ionic heads N+–CH3* become more tightly packed in the hydrophilic layer of the micelle shell. On the other hand, strong cross peaks, such as G1-P2, G1-P3, and G2-P3, appear in the 2D nuclear Overhauser enhancement spectroscopy (2D NOESY) spectra of the G12-3-12/PVP system, further indicating that the interaction sites are located between the hydrophobic tail of G12-3-12 and PVP ring.  相似文献   
945.
Our first‐generation synthetic study towards the total synthesis of propindilactone G ( 1 ) and its analogues is reported. The key synthetic steps were an intramolecular Pauson–Khand reaction (PKR) and a vinylogous Mukaiyama reaction (VMAR). The stereoselective synthesis of the CDE ring moiety with an all‐carbon quaternary center through a PKR was difficult, whilst a VMAR afforded a product with the opposite stereochemistry at the C20 position on the side chain. These results led us to redesign our synthetic strategy for the total synthesis of compound 1 .  相似文献   
946.
Han  Guan-Qun  Li  Xiao  Zhao  Xin  Dong  Bin  Hu  Wen-Hui  Liu  Yan-Ru  Shang  Xiao  Chai  Yong-Ming  Liu  Chen-Guang 《Journal of Solid State Electrochemistry》2016,20(10):2907-2912
Journal of Solid State Electrochemistry - ε-MnO2 microspheres have been synthesized using a self-sacrificial template method by annealing MnCO3 microspheres. The transformation process from...  相似文献   
947.
The utilization of nickel hydroxide and manganese dioxide solely as high-performance supercapacitive materials is hindered by their low capacitance retention and electrical conductivity. As Ni(OH)2 and MnO2 give a synergistic effect, porous Ni(OH)2-MnO2 nanosheets with a thickness of 9 nm are successfully grown on carbon fiber (CF) via a single-step hydrothermal co-deposition method. Multi-walled carbon nanotubes (CNT) are grafted with maleic anhydride (MA) through plasma-grafted process, followed by thiol-ene reaction to synthesize CNT-MA−S (CMS) to increase their aqueous dispersion behavior. The electrochemical properties of Ni(OH)2-MnO2 are further enhanced by dip-coating CMS on nanosheets. The composition and morphology of CMS and Ni(OH)2-MnO2 nanosheets are characterized using scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), electron spectroscopy for chemical analysis (ESCA), transmission electron microscopy (TEM), thermogravimetric analyses (TGA), nuclear magnetic resonance (NMR), and Raman spectroscopy. The electrochemical characteristics of fabricated electrodes are analyzed using cyclic voltammetry and chronopotentiometry methods. CF−Ni(OH)2-MnO2/CMS electrode is successfully synthesized without using any binder, exhibited ultrahigh specific capacitance (2049 F g−1 at a current density of 1 A g−1), and excellent capacitance retention (>80 %) at 2 A g−1 charge/discharge rate after 5000 cycles.  相似文献   
948.
The development of catalyst-controlled methods for direct functionalization of two distinct C−H bonds represents an appealing approach for C−C formations in synthetic chemistry. Herein, we describe an organocatalytic approach for straightforward acylation of C(sp3)−H bonds employing readily available aldehyde as “acyl source” involving dehydrogenative coupling of aldehydes with ether, amine, or benzylic C(sp3)−H bonds. The developed method affords a broad range of ketones under mild conditions. Mechanistically, simple ortho-cyanoiodobenzene is essential in the oxidative radical N-heterocyclic carbene catalysis to give a ketyl radical and C(sp3) radical through a rarely explored intermolecular hydrogen atom transfer pathway, rendering the acylative C−C formations in high efficiency under a metal- and light-free catalytic conditions. Moreover, the prepared products show promising anti-bacterial activities that shall encourage further investigations on novel agrochemical development.  相似文献   
949.
The development of high-performance X-ray detectors requires scintillators with fast decay time, high light yield, stability, and X-ray absorption capacity, which are difficult to achieve in a single material. Here, we present the first example of a lanthanide chalcogenide of LaCsSiS4 : 1 % Ce3+ that simultaneously integrates multiple desirable properties for an ideal scintillator. LaCsSiS4 : 1 % Ce3+ demonstrates a remarkably low detection limit of 43.13 nGyair s−1 and a high photoluminescence quantum yield of 98.24 %, resulting in a high light yield of 50480±1441 photons/MeV. Notably, LaCsSiS4 : 1 % Ce3+ exhibits a fast decay time of only 29.35±0.16 ns, making it one of the fastest scintillators among all lanthanide-based inorganic scintillators. Furthermore, this material shows robust radiation and moisture resistance, endowing it with suitability for chemical processing under solution conditions. To demonstrate the X-ray imaging capacity of LaCsSiS4 : 1 % Ce3+, we fabricated a flexible X-ray detector that achieved a high spatial resolution of 8.2 lp mm−1. This work highlights the potential of lanthanide chalcogenide as a promising candidate for high-performance scintillators.  相似文献   
950.
Highly efficient hydrogen evolution reaction (HER) electrocatalyst will determine the mass distributions of hydrogen-powered clean technologies, while still faces grand challenges. In this work, a synergistic ligand modulation plus Co doping strategy is applied to 1T−MoS2 catalyst via CoMo-metal-organic frameworks precursors, boosting the HER catalytic activity and durability of 1T−MoS2. Confirmed by Cs corrected transmission electron microscope and X-ray absorption spectroscopy, the polydentate 1,2-bis(4-pyridyl)ethane ligand can stably link with two-dimensional 1T−MoS2 layers through cobalt sites to expand interlayer spacing of MoS2 (Co−1T−MoS2-bpe), which promotes active site exposure, accelerates water dissociation, and optimizes the adsorption and desorption of H in alkaline HER processes. Theoretical calculations indicate the promotions in the electronic structure of 1T−MoS2 originate in the formation of three-dimensional metal-organic constructs by linking π-conjugated ligand, which weakens the hybridization between Mo-3d and S-2p orbitals, and in turn makes S-2p orbital more suitable for hybridization with H-1s orbital. Therefore, Co−1T−MoS2-bpe exhibits excellent stability and exceedingly low overpotential for alkaline HER (118 mV at 10 mA cm−2). In addition, integrated into an anion-exchange membrane water electrolyzer, Co−1T−MoS2-bpe is much superior to the Pt/C catalyst at the large current densities. This study provides a feasible ligand modulation strategy for designs of two-dimensional catalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号