首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6611篇
  免费   1135篇
  国内免费   1047篇
化学   5045篇
晶体学   145篇
力学   354篇
综合类   87篇
数学   736篇
物理学   2426篇
  2024年   33篇
  2023年   185篇
  2022年   340篇
  2021年   355篇
  2020年   381篇
  2019年   362篇
  2018年   288篇
  2017年   323篇
  2016年   368篇
  2015年   393篇
  2014年   489篇
  2013年   577篇
  2012年   634篇
  2011年   607篇
  2010年   449篇
  2009年   420篇
  2008年   446篇
  2007年   383篇
  2006年   342篇
  2005年   246篇
  2004年   211篇
  2003年   128篇
  2002年   185篇
  2001年   150篇
  2000年   121篇
  1999年   88篇
  1998年   62篇
  1997年   35篇
  1996年   35篇
  1995年   22篇
  1994年   30篇
  1993年   14篇
  1992年   10篇
  1991年   20篇
  1990年   11篇
  1989年   5篇
  1988年   4篇
  1987年   5篇
  1986年   2篇
  1985年   7篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1977年   3篇
  1975年   1篇
  1974年   4篇
  1971年   2篇
  1959年   2篇
  1936年   1篇
排序方式: 共有8793条查询结果,搜索用时 15 毫秒
991.
Materials with ordered mesoporous structures have shown great potential in a wide range of applications. In particular, the combination of mesoporosity, low dimensionality, and well‐defined morphology in nanostructures may exhibit even more attractive features. However, the synthesis of such structures is still challenging in polar solvents. Herein, we report the preparation of ultrathin two‐dimensional (2D) nanoflakes of transition‐metal phosphates, including FePO4, Mn3(PO4)2, and Co3(PO4)2, with highly ordered mesoporous structures in a nonpolar solvent. The as‐obtained nanoflakes with thicknesses of about 3.7 nm are constructed from a single layer of parallel‐packed pore channels. These uniquely ordered mesoporous 2D nanostructures may originate from the 2D assembly of cylindrical micelles formed by the amphiphilic precursors in the nonpolar solvent. The 2D mesoporous FePO4 nanoflakes were used as the cathode for a lithium‐ion battery, which exhibits excellent stability and high rate capabilities.  相似文献   
992.
Allenyl ketones are employed as coupling partners in palladium‐catalyzed oxidative cross‐coupling reactions with organoboronic acids. This reaction constitutes an efficient methodology for the synthesis of highly substituted furan derivatives. Palladium‐carbene migratory insertion is proposed as the key step in this transformation.  相似文献   
993.
We report the complete ethanolysis of Kraft lignin over an α‐MoC1?x/AC catalyst in pure ethanol at 280 °C to give high‐value chemicals of low molecular weight with a maximum overall yield of the 25 most abundant liquid products (LP25) of 1.64 g per gram of lignin. The LP25 products consisted of C6–C10 esters, alcohols, arenes, phenols, and benzyl alcohols with an overall heating value of 36.5 MJ kg?1. C6 alcohols and C8 esters predominated and accounted for 82 wt % of the LP25 products. No oligomers or char were formed in the process. With our catalyst, ethanol is the only effective solvent for the reaction. Supercritical ethanol on its own degrades Kraft lignin into a mixture of small molecules and molecular fragments of intermediate size with molecular weights in the range 700–1400, differing in steps of 58 units, which is the weight of the branched‐chain linkage C3H6O in lignin. Hydrogen was found to have a negative effect on the formation of the low‐molecular‐weight products.  相似文献   
994.
Using the rigid norbornane scaffold, a series of low-molecular-weight organogelators has been synthesised and evaluated. Three separate compounds (16, 19 and 20) were identified as organogelators in three aromatic organic solvents (PhMe, anisole and o-xylene). The formation of fibrillar assemblies at nanometre level was confirmed using atomic force microscopy and transmission electron microscopy.  相似文献   
995.
A facile,one-pot synthesis of N-aryl propargylamine from aromatic boronic acid,aqueous ammonia,and propargyl bromide has been achieved under microwave-assisted conditions.The reactions can be smoothly completed within a total 10 min through a two-step procedure,including copper-catalyzed coupling of aromatic boronic acids with aqueous ammonia and following propargylation by propargyl bromide.  相似文献   
996.
Herein, a facile and noncovalent modification for multiwalled carbon nanotubes (MWNTs) is adopted by the self-polymerization of dopamine (DOPA). And, the polydopamine-coated MWNTs (D-MWNTs) were further incorporated into poly(l-lactide) (PLLA) matrix through the solvent-casting method. It is found that the D-MWNTs tend to be well dispersed in PLLA matrix than the pristine MWNTs and the D-MWNTs that can act as heterogeneous nucleators that evidently affect the morphology and crystallization behavior of PLLA. In addition, the significant improvement of dispersion and the interface interaction of PLLA/D-MWNTs, via dopamine coating between the MWNTs and PLLA matrix, results in enhanced mechanical and thermal properties and electrical conductivity. This facile methodology is believed to afford broad application potential in carbon nanotubes (CNTs)-based polymer nanocomposites.  相似文献   
997.
Semi-diluted Xanthan solution has been widely used in various fields, especially in enhancing oil recovery. The oscillatory shear and flow shear behaviors of Xanthan are important to oil flooding. The oscillatory shear relates to molecular motions, while flow shear reflects flowing characterization. In oscillatory shear mode, the storage modulus, loss modulus and tanδ has been measured. Calculating relaxation spectra through storage modulus, we found that the peak of segments’ relaxation heads to smaller relaxation time side. Also, the quantity of relaxation units increases as concentration increases. However, the relaxation time spectra are less affected by salinity. In flow shear mode, the relationship between shear rate and viscosity has been investigated. As concentration or salinity increases, the pseudoplastic of Xanthan solutions becomes more obvious. Furthermore, primary normal stress differences of Xanthan semi-diluted solutions lightly increase at first then sharply decrease as shear rate increases. This abnormal phenomenon may refer to wall slip.  相似文献   
998.
999.
1000.
Three types of zirconium phosphonate (org‐ZrP) with different functional groups (―COOH, ―SO3H, ―NO2) were prepared first and then added into chitosan (CS) matrix, respectively. The effect of these functional groups on structure, morphologies, and mechanical properties of chitosan films was investigated. The Fourier transform infrared spectroscopy revealed that org‐ZrP had intensely interacted with chitosan in the composites because of introducing functional groups on the fillers. The composite films filled with zirconium sulfophenylphosphonate exhibited the best mechanical properties among the three org‐ZrP fillers. These differences of reinforcement effect appeared to be caused by the difference of interfacial interactions between the org‐ZrP fillers and matrix. The stronger the interfacial interactions are, the better the reinforcement effect is. In addition, the moisture uptake (Mu) of CS/org‐ZrP‐n composite films depended on the hydrophilic property of functional groups. It was found that zirconium nitrophenyl phosphonate showed the best moisture barrier property due to its poor absorbability for water molecules. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号