首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1094篇
  免费   45篇
  国内免费   6篇
化学   934篇
晶体学   3篇
力学   10篇
数学   119篇
物理学   79篇
  2024年   2篇
  2023年   7篇
  2022年   11篇
  2021年   19篇
  2020年   15篇
  2019年   14篇
  2018年   5篇
  2017年   14篇
  2016年   32篇
  2015年   29篇
  2014年   36篇
  2013年   32篇
  2012年   64篇
  2011年   79篇
  2010年   39篇
  2009年   37篇
  2008年   75篇
  2007年   66篇
  2006年   79篇
  2005年   64篇
  2004年   58篇
  2003年   40篇
  2002年   45篇
  2001年   17篇
  2000年   20篇
  1999年   13篇
  1998年   16篇
  1997年   17篇
  1996年   12篇
  1995年   19篇
  1994年   20篇
  1993年   16篇
  1992年   13篇
  1991年   7篇
  1990年   15篇
  1989年   11篇
  1988年   11篇
  1987年   13篇
  1986年   9篇
  1985年   8篇
  1984年   9篇
  1983年   6篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1975年   2篇
  1973年   2篇
排序方式: 共有1145条查询结果,搜索用时 31 毫秒
931.
The 1,2‐ and 1,4‐asymmetric additions of dialkylzinc reagents (ZnMe2 and ZnEt2) to cinnamaldehyde and N‐formylbenzylimine catalysed by [2.2]paracyclophane‐based N,O‐ligands were studied with quantum chemical methods. High level LPNO‐CEPA/1 (local pair natural orbital coupled electron pair approximation 1) calculations were performed to obtain reliable reaction barriers and binding energies. The calculations supported the experimentally observed selectivities. In the reaction, the alkyl transfer takes place on a binuclear zinc complex. Regioselectivity can be traced back to changes in π‐conjugation. Because the less conjugated N‐formylbenzylimine is more flexible, it is better suited for 1,4‐additions. Moreover, bulky ligands were shown to be important for stereoselectivity. The reason is that the tricyclic motif present in the transition states is sterically less hindered in the anti conformation. Based on the LPNO‐CEPA/1 data, a set of popular theoretical methods are validated. Although it was possible to set up a procedure to obtain the stereoselectivities with computationally less demanding methods, this was not possible for the regioselectivity of the reactions.  相似文献   
932.
An array of branched poly(?‐caprolactone)s was successfully synthesized using an one‐pot inimer promoted ring‐opening multibranching copolymerization (ROCP) reaction. The biorenewable, commercially available yet unexploited comonomer and initiator 2‐hydroxy‐γ‐butyrolactone was chosen as the inimer to extend the use of 5‐membered lactones to branched structures and simultaneously avoiding the typical tedious work involved in the inimer preparation. Reactions were carried out both in bulk and in solution using stannous octoate (Sn(Oct)2) as the catalyst. Polymerizations with inimer equivalents varying from 0.01 to 0.2 were conducted which resulted in polymers with a degree of branching ranging from 0.049 to 0.124. Detailed ROCP kinetics of different inimer systems were compared to illustrate the branch formation mechanism. The resulting polymer structures were confirmed by 1H, 13C, and 1H‐13C HSQC NMR and SEC (RI detector and triple detectors). The thermal properties of polymers with different degree of branching were investigated by DSC, confirming the branch formation. Through this work, we have extended the current use of the non‐homopolymerizable γ‐butyrolactone to the branched polymers and thoroughly examined its behaviors in ROCP. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1908–1918  相似文献   
933.
934.
Co3O4‐modified CeO2 (Co/Ce 1:4) was prepared by a combination of sol–gel processing and solvothermal treatment. The distribution of Co was controlled by means of the synthesis protocol to yield three different morphologies, namely, Co3O4 nanoparticles located on the surface of CeO2 particles, coexistent Co3O4 and CeO2 nanoparticles, or Co oxide structures homogeneously distributed within CeO2. The effect of the different morphologies on the properties of Co3O4–CeO2 was investigated with regard to the crystallite phase(s), particle size, surface area, and catalytic activity for CO oxidation. The material with Co3O4 nanoparticles finely dispersed on the surface of CeO2 particles had the highest catalytic activity.  相似文献   
935.
Understanding the adsorption and reaction between hydrogen and graphene is of fundamental importance for developing graphene‐based concepts for hydrogen storage and for the chemical functionalization of graphene by hydrogenation. Recently, theoretical studies of single‐sided hydrogenated graphene, so called graphone, predicted it to be a promising semiconductor for applications in graphene‐based electronics. Here, we report on the synthesis of graphone bound to a Ni(111) surface. We investigate the formation process by X‐ray photoelectron spectroscopy (XPS), temperature‐programmed desorption (TPD), and density‐functional theory calculations, showing that the hydrogenation of graphene with atomic hydrogen indeed leads to graphone, that is, a hydrogen coverage of 1 ML (4.2 wt %). The dehydrogenation of graphone reveals complex desorption processes that are attributed to coverage‐dependent changes in the activation energies for the associative desorption of hydrogen as molecular H2.  相似文献   
936.
Solid‐state nuclear magnetic resonance (NMR) spectroscopy has been successfully applied to elucidate the atomic‐resolution structures of insoluble proteins. The major bottleneck is the difficulty to obtain valuable long‐distance structural information. Here, we propose the use of distance restraints as long as 32 Å, obtained from the quantification of transverse proton relaxation induced by a methanethiosulfonate spin label (MTSL). Combined with dipolar proton–proton distance restraints, this method allows us to obtain protein structures with excellent precision from single spin‐labeled 1 mg protein samples using fast magic angle spinning.  相似文献   
937.
Two symmetrically substituted phenylenevinylene D‐A‐D′‐A‐D type siblings, (2Z,2′Z)‐2,2′‐(2,5‐dimethoxy‐1,4‐phenylene)bis(3‐(4‐(dimethylamino)phenyl)acrylonitrile) (↑‐dscn) and (2Z,2′Z)‐3,3′‐(2,5‐dimethoxy‐1,4‐phenylene)bis(2‐(4‐(dimethylamino)phenyl)acrylonitrile) (↓‐dscn), are prepared. We investigate the effect of different but symmetrical location of these cyano groups in vinylene bridges on the 1‐photon and 2‐photon absorption behaviors. We report that the closeness of CN group on the vinyl group to the central phenyl ring in ↑‐dscn induces an intramolecular geometric distortion between the central phenyl ring and vinylene group, preventing the effective π‐conjugation length in ground and excited states. Thus, the transition energy that is observed in 1‐photon absorption and fluorescence is larger in ↑‐dscn than in ↓‐dscn. This leads to a different intramolecular charge distribution, as a result of which the linear and nonlinear optical properties strongly depend on the position of acceptors. These results are theoretically unraveled in terms of charge transfer pathways, charge distribution, and charge distribution differences on transition.  相似文献   
938.
β-1,4-Galactosyltransferase 7 (β4GalT7) is a key enzyme in the biosynthesis of glycosaminoglycan (GAG) chains. Natural and synthetic xylosides can be used to both inhibit and prime GAG synthesis by acting as inhibitors or substrates for β4GalT7. In this report, we exploit hydroxylated oxanes as deoxygenated xyloside analogs to clarify the minimum protein-ligand interactions required for galactosylation and/or inhibition. Enantiomerically pure substances were synthesized using a chiral pool approach whereas the corresponding racemates were obtained from simple starting materials. The results of a β4GalT7 assay show that a single hydroxyl group on an oxane ring is insufficient to induce galactosylation or inhibition, which implies that at least two substituents, one of which being 3-OH, needs to be present.  相似文献   
939.
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号