首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9050篇
  免费   398篇
  国内免费   289篇
化学   5332篇
晶体学   51篇
力学   244篇
综合类   18篇
数学   1959篇
物理学   2133篇
  2022年   69篇
  2021年   100篇
  2020年   138篇
  2019年   126篇
  2018年   227篇
  2017年   214篇
  2016年   340篇
  2015年   261篇
  2014年   349篇
  2013年   703篇
  2012年   461篇
  2011年   586篇
  2010年   356篇
  2009年   326篇
  2008年   471篇
  2007年   446篇
  2006年   438篇
  2005年   321篇
  2004年   288篇
  2003年   235篇
  2002年   270篇
  2001年   222篇
  2000年   169篇
  1999年   128篇
  1998年   112篇
  1997年   83篇
  1996年   79篇
  1995年   74篇
  1994年   61篇
  1993年   70篇
  1992年   82篇
  1991年   74篇
  1990年   70篇
  1989年   67篇
  1988年   70篇
  1987年   65篇
  1986年   62篇
  1985年   83篇
  1984年   83篇
  1983年   84篇
  1982年   78篇
  1981年   58篇
  1980年   77篇
  1979年   68篇
  1978年   97篇
  1977年   71篇
  1976年   84篇
  1975年   67篇
  1974年   72篇
  1973年   55篇
排序方式: 共有9737条查询结果,搜索用时 15 毫秒
971.
The combination of N‐heterocyclic and multicarboxylate ligands is a good choice for the construction of metal–organic frameworks. In the title coordination polymer, poly[bis{μ2‐1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole‐κ2N3:N4}(μ4‐butanedioato‐κ4O1:O1′:O4:O4′)(μ2‐butanedioato‐κ2O1:O4)dicadmium], [Cd(C4H4O4)(C9H8N6)]n, each CdII ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from three carboxylate groups of three succinate (butanedioate) ligands and two N atoms from two 1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole (bimt) ligands. CdII ions are connected by two kinds of crystallographically independent succinate ligands to generate a two‐dimensional layered structure with bimt ligands located on each side of the layer. Adjacent layers are further connected by hydrogen bonding, leading to a three‐dimensional supramolecular architecture in the solid state. Thermogravimetric analysis of the title polymer shows that it is stable up to 529 K and then loses weight from 529 to 918 K, corresponding to the decomposition of the bimt ligands and succinate groups. The polymer exhibits a strong fluorescence emission in the solid state at room temperature.  相似文献   
972.
973.
A novel palladium‐catalyzed C H double carbonylation introduces two adjacent carbonyl groups for the synthesis of isatins from readily available anilines. The reaction proceeds under atmospheric pressure of CO with high regioselectivity and without any additives. Density functional theory investigations indicate that the palladium‐catalyzed double carbonylation catalytic cycle is plausible.  相似文献   
974.
975.
A novel graphene oxide (GO) fluorescence switch-based homogenous system has been developed to solve two problems that are commonly encountered in conventional GO-based biosensors. First, with the assistance of toehold-mediated nonenzymatic amplification (TMNA), the sensitivity of this system greatly surpasses that of previously described GO-based biosensors, which are always limited to the nM range due to the lack of efficient signal amplification. Second, without enzymatic participation in amplification, the unreliability of detection resulting from nonspecific desorption of DNA probes on the GO surface by enzymatic protein can be avoided. Moreover, the interaction mechanism of the double-stranded TMNA products contains several single-stranded toeholds at two ends and GO has also been explored with combinations of atomic force microscopy imaging, zeta potential detection, and fluorescence assays. It has been shown that the hybrids can be anchored to the surface of GO through the end with more unpaired bases, and that the other end, which has weaker interaction with GO, can escape GO adsorption due to the robustness of the central dsDNA structures. We verified this GO fluorescence switch-based detection system by detecting microRNA 21, an overexpressed non-encoding gene in a variety of malignant cells. Rational design of the probes allowed the isothermal nonenzymatic reaction to achieve more than 100-fold amplification efficiency. The detection results showed that our strategy has a detection limit of 10 pM and a detection range of four orders of magnitude.  相似文献   
976.
One-pot anti-Mannich reaction of vanillin, aniline and cyclohexanone was successfully catalyzed by ionic liquid triethanolammonium chloroacetate, at room temperature. Yield of the obtained Mannich base was very good and excellent diastereoselectivity was achieved. Mechanism of the reaction was investigated using the density functional theory. The reaction started with a nucleophilic attack of aniline nitrogen at the carbonyl group of vanillin. The intermediate α-amino alcohol formed in this way was further subjected to protonation by the triethanolammonium ion yielding the imminium ion. Theoretically, the obtained imminium ion and the enol form of cyclohexanone can build the protonated Mannich base via the anti and syn pathways. The chloroacetic anion spontaneously abstracts the proton yielding the final product of the reaction anti 2-[1-(N-phenylamino)-1-(4-hydroxy-3-methoxyphenyl)]methylcyclohexanone (MB-H). The syn pathway requires lower activation energy but the anti pathway yields a thermodynamically more stable product, which implies that the examined Mannich reaction is thermodynamically controlled.  相似文献   
977.
N‐(3‐Methoxypropyl) acrylamide (MPAM) was polymerized by controlled radical polymerization (CRP) methods such as nitroxide‐mediated polymerization (NMP) and reversible addition–fragmentation chain‐transfer polymerization (RAFT). CRP was expected to yield well‐defined polymers with sharp lower critical solution temperature (LCST) transitions. NMP with the BlocBuilder (2‐([tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino]oxy)‐2‐methylpropanoic acid) and SG1 ([tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino] oxidanyl) initiating system revealed low yields and lack of control (high dispersity, ? ~ 1.5–1.6, and inhibition of chain growth). However, RAFT was far more effective, with linear number average molecular weight, , versus conversion, X, plots, low ? ~ 1.2–1.4 and the ability to form block copolymers using N,N‐diethylacrylamide (DEAAM) as the second monomer. Poly(MPAM) (with = 13.7–25.3 kg mol?1) thermoresponsive behavior in aqueous media revealed cloud point temperatures (CPT)s between 73 and 92 °C depending on solution concentration (ranging from 1 to 3 wt %). The and the molecular weight distribution were the key factors determining the CPT and the sharpness of the response, respectively. Poly(MPAM)‐b‐poly(DEAAM) block copolymer ( = 22.3 kg mol?1, ? = 1.41, molar composition FDEAAM = 0.38) revealed dual LCSTs with both segments revealing distinctive CPTs (at 75 and 37 °C for poly(MPAM) and poly(DEAAM) blocks, respectively) by both UV–Vis and dynamic light scattering. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 59–67  相似文献   
978.
Despite various studies on the polymerization of poly(p‐phenylene vinylene) (PPV) through different precursor routes, detailed mechanistic knowledge on the individual reaction steps and intermediates is still incomplete. The present study aims to gain more insight into the radical polymerization of PPV through the Gilch route. The initial steps of the polymerization involve the formation of a p‐quinodimethane intermediate, which spontaneously self‐initiates through a dimerization process leading to the formation of diradical species; chain propagation ensues on both sides of the diradical or chain termination occurs by the formation of side products, such as [2.2]paracyclophanes. Furthermore, different p‐quinodimethane systems were assessed with respect to the size of their aromatic core as well as the presence of heteroatoms in/on the conjugated system. The nature of the aromatic core and the specific substituents alter the electronic structure of the p‐quinodimethane monomers, affecting the mechanism of polymerization. The diradical character of the monomers has been investigated with several advanced methodologies, such as spin‐projected UHF, CASSCF, CASPT2, and DMRG calculations. It was shown that larger aromatic cores led to a higher diradical character in the monomers, which in turn is proposed to cause rapid initiation.  相似文献   
979.
Noncovalent and multifunctional hybrids have been generated via π–π stacking and electrostatic interactions by combining the nanometer‐scale graphene structure of graphene quantum dots (GQDs) with FeIII 5,10,15,20‐tetrakis(1‐methyl‐4‐pyridyl)porphine (FeTMPyP). The inner filter effect (IFE) of FeTMPyP on the GQDs results in substantial PL quenching of the GQDs. The quenched PL of GQDs by the FeTMPyP can be switched back “on” in response to the reaction between FeTMPyP and H2O2, which causes rupture of the cyclic tetrapyrrolic nucleus with consequential loss of iron from FeTMPyP, and then proceeds further to produce colorless dipyrroles and monopyrroles. This “turn on” system can be applied for simple and convenient H2O2 sensing and can be further extended to the detection of glucose in combination with the specific catalytic effect of glucose oxidase (GOx) through the oxidation of glucose and formation of H2O2. Because of the inherent synthetic control available for the design of metalloporphyrins, the GQDs‐based optical sensing approach described here has the potential to be highly versatile for other target analytes.  相似文献   
980.
Cyanide‐catalyzed benzoin condensation of terephthaldehyde produces a cyclic tetramer, which we propose to name cyclotetrabenzoin. Cyclotetrabenzoin is a square‐shaped macrocycle ornamented with four α‐hydroxyketone functionalities pointing away from the central cavity, the dimensions of which are 6.9×6.9 Å. In the solid state, these functional groups extensively hydrogen bond, resulting in a microporous three‐dimensional organic framework with one‐dimensional nanotube channels. This material exhibits permanent—albeit low‐porosity, with a Langmuir surface area of 52 m2 g?1. Cyclotetrabenzoin’s easy and inexpensive synthesis and purification may inspire the creation of other shape‐persistent macrocycles and porous molecular crystals by benzoin condensation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号