首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   2篇
化学   29篇
晶体学   1篇
物理学   2篇
  2023年   1篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
排序方式: 共有32条查询结果,搜索用时 31 毫秒
21.
The functionalization of SBA-15 with mercaptopropyl trimethoxysilane leads to a material capable of absorbing Pd from organic and aqueous solutions. The resulting Pd-loaded material acts as a catalyst for the Suzuki-Miyaura and Mizoroki-Heck coupling reactions. Leaching studies show that the filtrate contains as little as 3 ppb Pd after reaction. Aminopropylated silica is an effective scavenger, and catalyst for the Mizoroki-Heck reaction, but leaching is significant (35 ppm), illustrating the importance of the thiol ligand to retain Pd on the surface. Heterogeneity tests such as hot filtration experiments and three-phase tests show that the reaction is occurring predominantly via surface-bound Pd.  相似文献   
22.
The kinetics of methanolysis of six O-ethyl O-aryl methylphosphonates (6a-f) promoted by methoxide, La3+ and 1,5,9-triazacyclododecane complex of Zn2+(-OCH3) (5:Zn2+(-OCH3)) were studied as simulants for chemical warfare (CW) agents, and analyzed through the use of Br?nsted plots. The beta(lg) values are, respectively, -0.76, -1.26 and -1.06, pointing to significant weakening of the P-OAr bond in the transition state. For the metal-catalyzed reactions the data are consistent with a concerted process where the P-OAr bond rupture has progressed to the extent of 84% in the La3+ reaction and ca. 70% in the Zn2+ catalyzed reaction. The catalysis afforded by the metal ions is remarkable, being about 10(6)-fold and 10(8)-fold for poor and good leaving groups, respectively, relative to the background reactions at pH 9.1. Solvent deuterium kinetic isotope studies for two of the substrates promoted by 5:Zn2+(-OCH3) give kH/kD = 1.0 +/- 0.1, consistent with a nucleophilic mechanism. A unified mechanism for the metal-catalyzed reactions is presented which involves pre-equilibrium coordination of the substrate to the metal ion followed by intramolecular delivery of a coordinated methoxide.  相似文献   
23.
A radiation tolerance strain, Pantoea agglomerans was isolated from γ-irradiated carrot samples (Daucus carota). D10 determination showed that the radioresistance of this bacterium is five-fold higher than Escherichia coli, both belonging to the family of Enterobacteriaceae. DNA isolated from untreated and irradiated bacterial cells was analyzed by FT-IR spectroscopy to investigate the radiotolerance of this bacterium. At doses <5 kGy, an alteration of the interbase hydrogen networks was observed and characterized mainly by an increase of bands assigned to the carbonyl non-pairing and the free amine groups. Moderate breakage of the DNA backbone and damage of the osidic structure were also observed. Similar spectral profiles were noticed at doses ≥5 kGy, but additional increase of the band intensity of CC and CN suggests damages of nucleobases. High number of asymmetric PO2 and upper shift of symmetric PO2 are indicative of DNA strand breaks. Osidic damages were evidenced by decrease of the absorption bands ascribed to deoxyribosyl moieties and by appearance of C–OH band. DNA degradation at high irradiation doses was also noticed by electrophoresis using agarose gel. It appeared that DNA underwent covalent cross-linking, as revealed by agglomeration of DNA in the wells of agarose gel.  相似文献   
24.
A new method for enantioselective organocatalytic cyclopropanation is described. This study outlines the identification of a new class of iminium catalyst based on the concept of directed electrostatic activation (DEA). This novel organocatalytic mechanism exploits dual activation of ylide and enal substrates through a proposed electrostatic activation and stereodirected protocol. Formation of trisubstituted cyclopropanes with high levels of enantio- and diastereoinduction is accomplished for a variety of alpha,beta-unsaturated aldehydes and sulfonium ylides. In addition, mechanistic studies have found that this cyclopropanation reaction exhibits enantioselectivity and reactivity profiles that are in accord with the proposed DEA step.  相似文献   
25.
[reaction: see text]. Diastereoselective syntheses of the endo- and exo-spirotetronates 1 and 2, corresponding to the galacto and agalacto fragments of quartromicins A3 and D3, are described. The key step of these syntheses are highly enantio- and diastereoselective Lewis acid catalyzed Diels-Alder reactions of the 1,1,3,4-tetrasubstituted diene 3.  相似文献   
26.
The dianionic NiN2S2 complex, Ni(ema)2-, ema=N,N'-ethylenebis-2-mercaptoacetamide, known as a reasonable model of the tripeptide complex Ni(CGC)2- (C=cysteine; G=glycine) with respect to the two carboxyamido nitrogens and cis-dithiolates in a (N2S2)4- ligand scaffold as found in acetyl CoA synthase, has been explored for S-based reactivity toward oxygenation and alkylation. The isolation and structural characterization of a sulfinato species, [Et4N]2[Ni(ema).O2], prepared through a unique direct reaction of molecular O2 with crystalline [Et4N]2[Ni(ema)] is described. Reaction of [Et4N]2[Ni(ema)] with Br(CH2)3Br yields a neutral N2S2 macrocyclic complex shown by DFT computations and electrostatic-potential mapping to be opposite in electron distribution from the neutral NiN2S2 complexes in which the anionic charge is localized on sulfur.  相似文献   
27.
In this contribution, we report that a self-assembled platinum molecular square [Pt(en)(4,4'-dipyridyl)]4 can act as an efficient G-quadruplex binder and telomerase inhibitor. Molecular modeling studies show that the square arrangement of the four bipyridyl ligands, the highly electropositive nature of the overall complex, as well as hydrogen bonding interactions between the ethylenediamine ligands and phosphates of the DNA backbone all contribute to the observed strong binding affinity to the G-quadruplex. Through thermal denaturation studies with duplex and quadruplex FRET probes and enzymatic assays, we demonstrate that this platinum square strongly binds to G-quadruplexes and can act as an inhibitor of telomerase. This study thus shows the potential of supramolecular self-assembly to readily generate scaffolds of unique geometries for effective targeting of G-quadruplexes and for the ultimate development of selective antitumor therapies.  相似文献   
28.
Complexes that bind and stabilize G-quadruplex DNA structures are of significant interest due to their potential to inhibit telomerase and halt tumor cell proliferation. We here report the synthesis of the first Pt(II) G-quadruplex selective molecules, containing pi-extended phenanthroimidazole ligands. Binding studies of these complexes with duplex and quadruplex d(T(4)G(4)T(4))(4) DNA were performed. Intercalation to duplex DNA was established through UV/Vis titration, CD spectroscopy, and thermal denaturation studies. Significantly stronger binding affinity of these phenanthroimidazole Pt(II) complexes to G-quadruplex DNA was observed by UV/Vis spectroscopy and competitive equilibrium dialysis studies. Observed binding constants to quadruplex DNA were nearly two orders of magnitude greater than for duplex DNA. Circular dichroism studies show that an increase in pi-surface leads to a significant increase in the thermal stability of the Pt(II)/quadruplex DNA complex. The match in the pi-surface of these phenanthroimidazole Pt(II) complexes with quadruplex DNA was further substantiated by molecular modeling studies. Numerous favorable pi-stacking interactions with the large aromatic surface of the intermolecular G-quadruplex, and unforeseen hydrogen bonds between the ancillary ethylenediamine ligands and the quadruplex phosphate backbone are predicted. Thus, both biological and computational studies suggest that coupling the square-planar geometry of Pt(II) with pi-extended ligands results in a simple and modular method to create effective G-quadruplex selective binders, which can be readily optimized for use in telomerase-based antitumor therapy.  相似文献   
29.
A solid‐to‐hollow evolution in macroscopic structures is challenging in synthetic materials. A fundamentally new strategy is reported for guiding macroscopic, unidirectional shape evolution of materials without compromising the material's integrity. This strategy is based on the creation of a field with a “swelling pole” and a “shrinking pole” to drive polymers to disassemble, migrate, and resettle in the targeted region. This concept is demonstrated using dynamic hydrogels containing anchored acrylic ligands and hydrophobic long alkyl chains. Adding water molecules and ferric ions (Fe3+) to induce a swelling–shrinking field transforms the hydrogels from solid to hollow. The strategy is versatile in the generation of various closed hollow objects (for example, spheres, helix tubes, and cubes with different diameters) for different applications.  相似文献   
30.
Regioselectivity of the nucleophilic ring opening of N-benzoyl (Bz) and N-benzyloxycarbonyl (Cbz) activated 2-methylaziridines with anhydrous tetramethylammonium fluoride, anhydrous hydrogen fluoride, and 19F or [18F]-labelled potassium cryptand fluoride ([K222][18/19F]) were investigated. Whereas all reactions with rigorously anhydrous N(CH3)4F did not ring-open the aziridines, reactions with anhydrous HF exclusively yielded the 2-fluoropropanamine derivatives. Reactions of Bz-protected and Cbz-protected 2-methylaziridine with [K222][18/19F] yielded the 2-fluoropropanamine and 1-fluoro-2-propanamine derivatives as the major products, respectively, and represents the first example of regiocontrol during ring opening of aziridines with [18F]-fluoride.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号