首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
化学   48篇
物理学   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   6篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1990年   1篇
  1984年   2篇
  1982年   1篇
  1981年   2篇
排序方式: 共有49条查询结果,搜索用时 410 毫秒
41.
Summary The synthesis and characterization of the following coordination compounds derived from quinic acid (quin) (1): [Cu(quin)Cl(H2O)]n·(H2O)n(2); [Ni(quin)Cl(H2O)]n·(2H2O) n (3); [Co(quin) Cl(H2O)]n·(2H2O)n(4); [Cu(quin) (NO3)(H2O)]n·(2H2O)n(5); [Cu(quin)(AcO)(H2O)]n· (2H2O)n(6); [Cu(quin)H2O]2·2H2O(7); [Co(quin)2]n (8); [Zn(quin)2](9); [Cd(quin)2](10) and [Hg(quin)2]· 4H2O (11) is presented. All of the compounds were characterized by i.r. and u.v. spectroscopy; in addition, (9) and (10) were analysed by n.m.r., and (2), (5) and (7) by X-ray crystallography. Due to the polyfunctionality of quinic acid diverse structures were obtained: (2) –(6) and (8) were polymeric, (7) was dimeric and (9) –(11) were spiranic. In compound (2) the Cu had a distorted octahedral structure; it was a chiral centre with six different substituents and an optically active ligand. Only one stereoisomer (OC-6-25-A) of the 30 possible was observed in the crystal. Compound (5) was also polymeric, the hexacoordinated Cu atom was a chiral centre (OC-6-53C) and only one stereoisomer was observed. It was bonded to three quinic acid ligands in three different coordination modes and each quinic acid was in turn bonded to three different Cu atoms. Each chain was linked to another two chains giving a net structure. Compound (7) was a dimer with two square pyramidal Cu atoms. Two apical water molecules were found in acis arrangement. Each quinic acid ligand was bonded to two Cu atoms which were linked by two oxygen bridges and each Cu atom was bonded to two quinic acid moieties.  相似文献   
42.
This work shows that it is possible to obtain self-standing Pd nanowires into anodic alumina membranes by a simple metal displacement deposition. By using a proper arrangement, specifically designed in order to optimize the process, polycrystalline Pd nanowires were deposited from a solution containing Pd(NH3)4(NO3)2 as precursor. Morphological analysis showed the formation of perfectly aligned nanowires with a uniform diameter throughout the entire length. This last parameter was controlled by both the deposition time and the ratio between the anodic area (active metal) and the cathodic area (pore bottom).  相似文献   
43.
A convenient synthesis of the title compounds is reported. These serve as models to study intramolecular N→B coordination by means of dynamic NMR spectroscopy (1H, 11B, 13C). Steric interactions between substituents at the boroxazolidine ring (C(5)Ph, C(4)Me, NMe) determine the stability of the N→B bond and the nitrogen configuration.  相似文献   
44.
Reactions of potassium 4-thioxo-3-thia-1,4a,9-triaza-fluorene-2-thiolate with Ph3PbCl, Ph3SnCl and Ph3GeCl provided the corresponding metal pentacoordinated compounds 2-4. Addition of THF afforded their hexacoordinated derivatives (5-7). Adducts of 2 and 3 with DMSO (8, 10), pyridine (9, 11), Ph3PO (12, 14) CH3OH (13, 15), respectively were synthesized. Compound 2 afforded the H2O adduct (16). In all cases the metal atom is chelated by the ligand through a covalent bond with S2 and a coordination bond with N1 forming four membered rings. Compounds were identified by 1H, 13C, 15N, 119Sn and 207Pb. X-ray diffraction structures of 2, 3, 8, 9, 11, 14 and 16 were obtained.  相似文献   
45.
The structure, dynamic behavior, protonation, methylation, and coordination sites of 2-guanidinobenzimidazole 1a were investigated. Structures of compounds [2-guanidinium-1,3,10-trihydrobenzimidazole]sulfate 1b , [2-guanidinium-1,3-dihydro-benzimidazole]sulfate 1c–1d , [2-guanidinium-1,3-dihydro-benzimidazole]tetrafluoroborate 1e , [2-guanidinium-1,3-dihydro-benzimidazole]chloride 1f , [2-guanidinium-1,3-dihydro-benzimidazole] perchlorate 1g , 2-guanidino-1-methyl-benzimidazole 2a , [2-guanidinium-1,3-dimethyl-benzimidazole]iodide 2b , [2-guanidinium-1-methyl-3-hydro-benzimidazole]chloride 2c , [2-guanidinium-1,10-dihydro-benzimidazole]acetate 3 , 2-guanidino-1-hydro-3-borane-benzimidazole 4a , 2-guanidino-1-methyl-3-borane-benzimidazole 4b , (2-guanidino-benzimidazole)dimethyltin 5 , [bis(2-guanidino-10-hydro-benzimidazole)nickel(II)] 6 , and [bis(2-guanidino-1,10-dihydro-benzimidazole)zinc(II)]nitrate 7 were determined based on 1H, 13C, and 15N NMR spectroscopy. The X-ray diffraction structures of 2a, 2b, 3, 6 , and 7 were obtained. The results show that 1a has an open structure without an intramolecular hydrogen bond in DMSO or DMF. The imidazolic N-3 is the preferred basic site in solution for protonation, methylation, and coordination and not N-10 as was suggested from semiempirical calculations. Under strong acidic conditions, diprotonation occurs at N-3 and N-10. In the solid state, 3 and 6 were protonated preferently at N10 rather than at N-1. © 1997 John Wiley & Sons, Inc. Heteroatom Chem 8: 397–410, 1997  相似文献   
46.
A series of aminodiphenylphosphanes 1 [Ph2P‐N(H)tBu ( a ), ‐NEt2 ( b ), ‐NiPr2 ( c )], 2 [Ph2P‐NHPh ( a ), ‐NH‐2‐pyridine ( b ), ‐NH‐3‐pyridine ( c ), ‐NH‐4‐pyridine ( d ), NH‐pyrimidine ( e ), NH‐2,6‐Me2‐C6H3 ( f ), NH‐3‐Me‐2‐pyridine ( g )], 3 [Ph2P‐N(Me)Ph ( a ), ‐NPh2 ( b )], and N‐pyrrolyldiphenylphosphane 4 (Ph2P‐NC4H4) was prepared and studied by NMR (1H, 13C, 31P, 15N NMR) spectroscopy. The isotope‐induced chemical shifts 1Δ14/15N(31P) were determined at natural abundance of 15N by using HEED INEPT experiments. A dependence of 1Δ14/15N(31P) on the substituents at nitrogen was found (alkyl < H < aryl; increasingly negative values). The magnitude and sign of the coupling constants 1J(31P,15N) (positive sign) are dominated by the presence of the lone pair of electrons at the phosphorus atom. The X‐ray structural analysis of 2b is reported, showing the presence of dimers owing to intermolecular hydrogen bridges in the solid state. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:542–550, 2001  相似文献   
47.
Pseudo‐ephedrine derived 2‐imino‐1,3‐thiazolidine 1 reacts with tris(diethylamino)phosphane by stepwise replacement of the diethylamino group to give the mono‐, bis‐ and tris(imino)phosphanes 2 , 3 and 4 , respectively, of which 4 could be isolated in pure state. The analogous reaction with diethylamino‐diphenylphosphane affords the imino‐diphenylphosphane 5 . The iminophosphanes react with sulfur or selenium to give the corresponding phosphorus(V) compounds. In contrast, the reaction of the iminophosphanes with oxygen is very slow; anhydrous trimethylamine N‐oxide reacts in the melt with the phosphanes to give the oxides 4(O) and 5(O) . The molecular structures of 4(O) (in mixture with 4 ), 4(Se) , 5(S) and 5(Se) were determined by X‐ray analysis. In all cases the ring‐sulfur and the phosphorus atoms are in cis‐positions at the C=N bonds. The analogous solution structures were determined by 1H, 13C, 15N, 31P and 77Se NMR spectroscopy. In the case of the compounds 5 , 5(O) , 5(S) and 5(Se) the isotope‐induced chemical shifts 1δ14/15N(31P) were determined, using INEPT‐HEED experiments.  相似文献   
48.
The coordination sites of 2,6‐bis(benzimidazol‐2′‐yl)pyridine ( 1 ) toward protons and the diamagnetic metal ions Li+, Na+, and Co3+ were investigated by NMR spectroscopy. Variable temperature 1H and 13C NMR experiments were performed on 1 in order to evaluate the tautomeric equilibrium and hydrogen bonding. Imidazole dicoordinated aromatic nitrogen atoms were protonated by trichloroacetic acid and the three N‐dicoordinated atoms by fuming H2SO4. Reactions of the ligand 1 and benzimidazole 2 with metallic sodium or LiH afforded anionic species; the alkali metal ions appeared solvated by THF, but not by the ligands 1 or 2 . In contrast, reaction of 1 with Co(III) produces the stable cation [Co( 1 ‐H)2]+ with cobalt ion coordinated by two molecules of the monodeprotonated ligand. © 2000 John Wiley & Sons, Inc. Heteroatom Chem 11:392–398, 2000  相似文献   
49.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号