首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   1篇
  国内免费   1篇
化学   85篇
力学   1篇
数学   10篇
物理学   19篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2013年   1篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   8篇
  2007年   1篇
  2006年   4篇
  2005年   6篇
  2004年   3篇
  2003年   4篇
  2001年   3篇
  2000年   13篇
  1999年   5篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1968年   2篇
  1963年   1篇
  1943年   2篇
  1940年   2篇
  1934年   2篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
21.
22.
23.
The effect of the chemical structure on the reactivity of alkenes used in thiol–ene photopolymerizations has been investigated with real‐time infrared spectroscopy. Model studies of thiol–ene photoreactions with various monofunctional hydrocarbon alkenes and the monofunctional thiol ethyl‐3‐mercaptopropionate have been performed to identify and understand structure–reactivity relationships. The results demonstrate that terminal enes react very rapidly with thiol, achieve complete conversion, and are independent of the aliphatic hydrocarbon substituent length. Disubstitution on a single carbon of a terminal ene significantly reduces the reactivity, whereas substitution on the carbon α to the terminal ene has a minimal influence on the reactivity. Internal trans enes display reduced reactivity and a lower overall conversion and deviate from the standard thiol–ene reaction mechanism because of steric strain induced by 1,3‐interactions. The reactivity and conversion of internal trans enes decrease as the substituents on the ene become larger, reaching a minimum when the substituent size is greater than or equal to that of propyl groups. Internal cis enes react rapidly with thiol; however, they undergo a fast isomerization–elimination reaction sequence generating the trans ene, which proceeds to react at a reduced rate with thiol. The reactivity of cyclic enes is dictated by ring strain, stereoelectronic effects, and hydrogen abstractability. The reactivity trends in the model studies have been used to explain the photopolymerization mechanism and kinetics of a series of multifunctional thiol–ene systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6283–6298, 2004  相似文献   
24.
25.
We have investigated several 1,3-dipolar cycloadditions of a chiral nitrone prepared from L-erythrulose. While cycloadditions to carbon-carbon multiple bonds of dipolarophiles such as ethyl acrylate, ethyl propiolate, or dimethyl acetylenedicarboxylate were poorly stereoselective, reaction with acrylonitrile provided predominantly one diastereomeric adduct. Furthermore, the regioselectivity exhibited by the two structurally similar dipolarophiles ethyl acrylate and ethyl propiolate was found to be opposite. The molecular mechanisms of these cycloadditions have thus been investigated by means of density functional theory (DFT) methods with the B3LYP functional and the 6-31G and 6-31+G basis sets. A simplified achiral version of nitrone 1 as the dipole, and methyl propiolate or acrylonitrile as the dipolarophiles, were chosen as computational models. The cycloadditions have been shown to take place through one-step pathways in which the C-C and C-O sigma bonds are formed in a nonsynchronous way. For the reaction with methyl propiolate, DFT calculations predict the experimentally observed meta regioselectivity. For the reaction with acrylonitrile, however, the predicted regioselectivity has been found to depend on the computational level used. The calculations further indicate the exo approach to be energetically favored in the case of the latter dipolarophile, in agreement with experimental findings. The main reason for this is the steric repulsion between the nitrile function and one of the methyl groups on the nitrone that progressively develops in the alternative endo approach.  相似文献   
26.
27.
28.
Low energy electron diffraction, Auger electron spectroscopy, X-ray photoelectron spectroscopy and line of sight mass spectrometry have been used to study the adsorption and desorption of dimethyldisulfide (DMDS) on Au(111). At 300 K adsorption is dissociative, forming a chemisorbed adlayer of methylthiolate with a 1/3 ML, (sq rt 3 x sq rt 3)R30 degrees, structure. At 100 K adsorption is molecular, with dissociation to form the 1/3 ML (sq rt 3 x sq rt 3)R30 degrees methylthiolate structure occurring at 138-160 K. A physisorbed DMDS layer, with a coverage of 1/6 ML of DMDS, forms on top of the (sq rt 3 x sq rt 3)R30 degrees chemisorbed MT surface for T < or = 180 K, with multilayers forming for T < or = 150 K. In temperature programmed desorption, multilayers of DMDS desorbed with zero order kinetics and an activation energy of 41 kJ mol(-1); the physisorbed layer desorbed with first order kinetics, exhibiting repulsive lateral interactions with an activation energy which varied from 63 kJ mol(-1) (theta = 0) to 51 kJ mol(-1) (theta = 1); the chemisorbed methylthiolate layer desorbed associatively as DMDS via the physisorbed layer, the activation energy for the reaction, 2 methylthiolate --> physisorbed DMDS, exhibiting repulsive lateral interactions with an activation energy which varied from 65 kJ mol(-1) (theta = 0) to 61 kJ mol(-1) (theta = 1). The physisorbed disulfide layer explains the pre-cursor state adsorption kinetics observed in sticking probability measurement, while its relatively facile formation provides a mechanism by which thiolate self-assembled monolayers can become mobile at room temperature.  相似文献   
29.
Electroless gold island thin films are formed by galvanic replacement of silver reduced onto a tin-sensitized silica surface. A novel approach to create nanoparticle ensembles with tunable particle dimensions, densities, and distributions by thermal transformation of these electroless gold island thin films is presented. Deposition time is adjusted to produce monomodal ensembles of nanoparticles from 9.5 +/- 4.0 to 266 +/- 22 nm at densities from 2.6 x 1011 to 4.3 x 108 particles cm-2. Scanning electron microscopy and atomic force microscopy reveal electroless gold island film structures as well as nanoparticle dimensions, densities, and distributions obtained by watershed analysis. Transmission UV-vis spectroscopy reveals photoluminescent features that suggest ultrathin EL films may be smoother than sputtered Au films. X-ray diffraction shows Au films have predominantly (111) orientation.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号