首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   4篇
化学   159篇
晶体学   1篇
力学   8篇
数学   49篇
物理学   63篇
  2023年   3篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2016年   5篇
  2015年   4篇
  2014年   9篇
  2013年   18篇
  2012年   9篇
  2011年   19篇
  2010年   14篇
  2009年   7篇
  2008年   20篇
  2007年   14篇
  2006年   16篇
  2005年   18篇
  2004年   16篇
  2003年   8篇
  2002年   5篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   6篇
  1991年   5篇
  1990年   2篇
  1989年   4篇
  1987年   6篇
  1983年   3篇
  1982年   1篇
  1981年   4篇
  1980年   2篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   3篇
  1974年   4篇
  1973年   1篇
  1970年   1篇
  1967年   1篇
  1964年   2篇
  1961年   1篇
  1959年   1篇
  1929年   1篇
排序方式: 共有280条查询结果,搜索用时 31 毫秒
271.
Elongated protein-based micro- and nanostructures are of great interest for a wide range of biomedical applications, where they can serve as a backbone for surface functionalization and as vehicles for drug delivery. Current production methods for protein constructs lack precise control of either shape and dimensions or render structures fixed to substrates. This work demonstrates production of recombinant spider silk nanowires suspended in solution, starting with liquid bridge induced assembly (LBIA) on a substrate, followed by release using ultrasonication, and concentration by centrifugation. The significance of this method lies in that it provides i) reproducability (standard deviation of length <13% and of diameter <38%), ii) scalability of fabrication, iii) compatibility with autoclavation with retained shape and function, iv) retention of bioactivity, and v) easy functionalization both pre- and post-formation. This work demonstrates how altering the function and nanotopography of a surface by nanowire coating supports the attachment and growth of human mesenchymal stem cells (hMSCs). Cell compatibility is further studied through integration of nanowires during aggregate formation of hMSCs and the breast cancer cell line MCF7. The herein-presented industrial-compatible process enables silk nanowires for use as functionalizing agents in a variety of cell culture applications and medical research.  相似文献   
272.
Synchrotron X‐ray radiography, due to its high temporal and spatial resolutions, provides a valuable means for understanding the in operando water transport behaviour in polymer electrolyte membrane fuel cells. The purpose of this study is to address the specific artefact of imaging sample movement, which poses a significant challenge to synchrotron‐based imaging for fuel cell diagnostics. Specifically, the impact of the micrometer‐scale movement of the sample was determined, and a correction methodology was developed. At a photon energy level of 20 keV, a maximum movement of 7.5 µm resulted in a false water thickness of 0.93 cm (9% higher than the maximum amount of water that the experimental apparatus could physically contain). This artefact was corrected by image translations based on the relationship between the false water thickness value and the distance moved by the sample. The implementation of this correction method led to a significant reduction in false water thickness (to ~0.04 cm). Furthermore, to account for inaccuracies in pixel intensities due to the scattering effect and higher harmonics, a calibration technique was introduced for the liquid water X‐ray attenuation coefficient, which was found to be 0.657 ± 0.023 cm?1 at 20 keV. The work presented in this paper provides valuable tools for artefact compensation and accuracy improvements for dynamic synchrotron X‐ray imaging of fuel cells.  相似文献   
273.
The surface science approach to catalysis, pioneered by 2007 Nobel Laureate in chemistry Gerhard Ertl, has helped revolutionize our understanding of heterogeneous catalysis at the atomic level. In this tutorial review we show how the scanning tunnelling microscope (STM), in combination with this surface science approach, is a very important tool for the study of catalytically relevant model systems. We illustrate how the high spatial and temporal resolution of the STM can be used to obtain quantitative information on elementary processes involved in surface catalyzed reactions. Furthermore, we show that the STM is an outstanding surface science tool to bridge the materials gap and the pressure gap between surface science experiments and real catalysis. Finally, we show that we are approaching an era where the atomic-scale insight gained from fundamental STM surface science studies can be used for the rational design of new catalysts from first principles.  相似文献   
274.
The present article reports on static and dynamic light scattering (SLS and DLS) studies of aqueous solutions of the nonionic surfactant C12EO6 and the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer EO20PO68EO20 (P123) at temperatures between 25 and 45 degrees C. In water, P123 self-assembles into spherical micelles with a hydrodynamic radius of 10 nm, and at 40 degrees C, these micelles consist of 131 unimers. Addition of C12EO6 leads to an association of the surfactant molecules to the P123 micelles and mixed micelles are formed. The size and structure of the mixed micelles as well as interparticle interactions were studied by varying the surfactant-to-copolymer (C12EO6/P123) molar ratio. The novelty of this study consists of a composition-induced structural change of the mixed micelles at constant temperature. They gradually change from being spherical to polymer-like with increasing C12EO6 content. At low C12EO6/P123 molar ratios (below 12), the SLS measurements showed that the molar mass of the mixed micelles decreases with an increasing amount of C12EO6 in the micelles for all investigated temperatures. In this regime, the mixed micelles are spherical and the DLS measurements revealed a decrease in the hydrodynamic radius of the mixed micelles. An exception was found for C12EO6/P123 molar ratios between 2 and 3, where the mixed micelles become rodlike at 40 degrees C. This was the subject of a previous study and has hence not been investigated here. At high molar ratios (48 and above), the polymer-like micelles present a concentration-induced growth, similar to that observed in the pure C12EO6/water system.  相似文献   
275.
Cationic monolayer-protected gold nanoparticles (AuNPs) with sizes of 6 or 2 nm interact with the cell membranes of Escherichia coli (Gram-) and Bacillus subtilis (Gram+), resulting in the formation of strikingly distinct AuNP surface aggregation patterns or lysis depending upon the size of the AuNPs. The aggregation phenomena were investigated by transmission electron microscopy and UV-vis spectroscopy. Upon proteolytic treatment of the bacteria, the distinct aggregation patterns disappeared.  相似文献   
276.
We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface can spontaneously break the axial symmetry and assume the form of a polygon rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating internal waves in a similar setup was observed for much lower rotation rates, where the free surface remains essentially flat [J. M. Lopez, J. Fluid Mech. 502, 99 (2004). We speculate that the instability is caused by the strong azimuthal shear due to the stationary walls and that it is triggered by minute wobbling of the rotating plate.  相似文献   
277.
Phosphorescence of platinum(II) octaethyl porphyrin (PtOEP), which has been used in organic light emitting diodes to overcome the efficiency limit imposed by the formation of triplet excitons, is studied by time-dependent (TD) density functional theory (DFT). The spin-orbit coupling (SOC) effects and the phosphorescence radiative lifetime (tau(p) (r)), calculated by the TD DFT method with the quadratic response technique, are analyzed for a series of porphyrins in order to elucidate the internal heavy atom effect on tau(p) (r). While the significance of the d(pi) orbital admixture into the lowest unoccupied molecular orbital e(g)(pi(*)), proposed by Gouterman et al. [J. Chem. Phys. 56, 4073 (1972)], is supported by our SOC calculations, we find that the charge-transfer (CT) mechanism is more important; the CT state of the (3)A(2g) symmetry provides effective SOC mixing with the ground state, and a large (3)A(2g)-(3)E(u) transition dipole moment gives the main contribution to the radiative phosphorescence rate constant. The IR and Raman spectra in the ground state and first excited triplet state (T(1)) are studied for proper assignment of vibronic patterns. An orbital angular momentum of the T(1) state is not quenched completely by the Jahn-Teller effect. A large zero-field splitting is predicted for PtP and PtOEP which results from a competition between the SOC and Jahn-Teller effects. A strong vibronic activity is found for the e(g) mode at 230 cm(-1) in PtP phosphorescence which is shifted to 260 cm(-1) in PtOEP. This out-of-plane vibration of the Pt atom produces considerable change of the SOC mixing. The role of charge-transfer state of d(pi)pi(*) type is stressed for the explanation of the electroluminescent properties of the dye doped light emitting diode.  相似文献   
278.
5-Chloro-N-ethyl-1,2-dihydro-4-hydroxy-1-methyl-2-oxo-N-phenyl-3-quinolinecarboxamide (laquinimod, 2) is an oral drug in clinical trials for the treatment of multiple sclerosis. The final step in the synthesis of 2 is a high-yielding aminolysis reaction of ester 1 with N-ethylaniline. An equilibrium exists between 1 and 2, and removal of formed methanol during the reaction is a prerequisite for obtaining high yields of 2 from 1. The reactivity of 1 and 2 is explained by a mechanistic model that involves a transfer of the enol proton to the exocyclic carbonyl substituent with concomitant formation of ketene 3. This proton transfer is especially facilitated for 2 because the intramolecular hydrogen bond to the carbonyl oxygen is weakened due to steric interactions. Both 1 and 2 undergo solvolosis reactions that obey first-order reaction kinetics, further supporting the theory that these two molecules are able to decompose unimolecularly into ketene 3. The solvent-dependent spectroscopic features of 2 indicate that the molecule mainly resides in two conformations. One conformation is favored in nonpolar solvents and is likely the result of intramolecular hydrogen bonding. The other conformation is favored in polar solvents and probably exhibits less intramolecular hydrogen bonding.  相似文献   
279.
Improved syntheses of 7-methyl-2-exo-[3′-(2-bromopyridin-3-yl)-5′-pyridinyl]-7-azabicyclo[2.2.1]heptanes (3) and 7-methyl-2-exo-[3’-(6-bromopyridin-2-yl)-5′-pyridinyl]-7-azabicyclo[2.2.1]heptanes (4), precursors for PET radioligands [18F]XTRA (1) and [18F]AZAN (2), involving a key Stille coupling step followed by deprotection of Boc group and N-methylation are described. The new synthetic procedures provided the title compounds in more than 40% overall yields.  相似文献   
280.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号