首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   2篇
化学   45篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   9篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
排序方式: 共有45条查询结果,搜索用时 46 毫秒
11.
12.
13.
14.
Expansion of the genetic alphabet has been a long-time goal of chemical biology. A third DNA base pair that is stable and replicable would have a great number of practical applications and would also lay the foundation for a semisynthetic organism. We have reported that DNA base pairs formed between deoxyribonucleotides with large aromatic, predominantly hydrophobic nucleobase analogues, such as propynylisocarbostyril (dPICS), are stable and efficiently synthesized by DNA polymerases. However, once incorporated into the primer, these analogues inhibit continued primer elongation. More recently, we have found that DNA base pairs formed between nucleobase analogues that have minimal aromatic surface area in addition to little or no hydrogen-bonding potential, such as 3-fluorobenzene (d3FB), are synthesized and extended by DNA polymerases with greatly increased efficiency. Here we show that the rate of synthesis and extension of the self-pair formed between two d3FB analogues is sufficient for in vitro DNA replication. To better understand the origins of efficient replication, we examined the structure of DNA duplexes containing either the d3FB or dPICS self-pairs. We find that the large aromatic rings of dPICS pair in an intercalative manner within duplex DNA, while the d3FB nucleobases interact in an edge-on manner, much closer in structure to natural base pairs. We also synthesized duplexes containing the 5-methyl-substituted derivatives of d3FB (d5Me3FB) paired opposite d3FB or the unsubstituted analogue (dBEN). In all, the data suggest that the structure, electrostatics, and dynamics can all contribute to the extension of unnatural primer termini. The results also help explain the replication properties of many previously examined unnatural base pairs and should help design unnatural base pairs that are better replicated.  相似文献   
15.
Genetic information is encoded by, but potentially not limited to, a four-letter alphabet. A variety of predominantly hydrophobic nucleobase analogues that form self-pairs in DNA have been examined as third base pair candidates. For example, the PICS self-pair is both stable in duplex DNA and synthesized by some wild-type polymerases with reasonable efficiency. These efforts to expand the genetic code are expected to be facilitated by optimizing both the unnatural nucleobase analogues and the polymerases that replicate them. Here, we report the use of an activity-based selection system to evolve a DNA polymerase that more efficiently replicates DNA containing the PICS self-pair. The selection system is based on the co-display on phage of DNA polymerase libraries and a DNA substrate containing the self-pair. Only polymerases that accept the unnatural substrate incorporate a biotin-dUTP to the attached primer and may then be isolated on a streptavidin solid support. A mutant of Sf polymerase, P2, was evolved which both inserts dPICSTP opposite dPICS in the template and extends the unnatural primer terminus by incorporation of the next correct natural dNTP, where the parental enzyme catalyzes neither step at detectable rates. P2 was found to be a triple mutant of Sf, with the mutations F598I, I614F, and Q489H. The evolved properties of P2, as well as the observed mutations, are consistent with an increased affinity for the DNA primer-template containing the self-pair.  相似文献   
16.
In an effort to expand the genetic alphabet, a number of unnatural, predominantly hydrophobic, nucleoside analogues have been developed which pair selectively in duplex DNA and during enzymatic synthesis. Significant progress has been made toward the efficient in vitro replication of DNA containing these base pairs. However, the in vivo expansion of the genetic alphabet will require that the unnatural nucleoside triphosphates be available within the cell at sufficient concentrations for DNA replication. We report our initial efforts toward the development of an unnatural in vivo nucleoside phosphorylation pathway that is based on nucleoside salvage enzymes. The first step of this pathway is catalyzed by the D. melanogaster nucleoside kinase, which catalyzes the phosphorylation of nucleosides to the corresponding monophosphates. We demonstrate that each unnatural nucleoside is phosphorylated with a rate that should be sufficient for the in vivo replication of DNA.  相似文献   
17.
18.
Expansion of the genetic alphabet with an unnatural base pair is a long‐standing goal of synthetic biology. We have developed a class of unnatural base pairs, formed between d 5SICS and analogues of d MMO2 that are efficiently and selectively replicated by the Klenow fragment (Kf) DNA polymerase. In an effort to further characterize and optimize replication, we report the synthesis of five new d MMO2 analogues bearing different substituents designed to be oriented into the developing major groove and an analysis of their insertion opposite d 5SICS by Kf and Thermus aquaticus DNA polymerase I (Taq). We also expand the analysis of the previously optimized pair, d NaM –d 5SICS , to include replication by Taq. Finally, the efficiency and fidelity of PCR amplification of the base pairs by Taq or Deep Vent polymerases was examined. The resulting structure–activity relationship data suggest that the major determinants of efficient replication are the minimization of desolvation effects and the introduction of favorable hydrophobic packing, and that Taq is more sensitive than Kf to structural changes. In addition, we identify an analogue (d NMO1 ) that is a better partner for d 5SICS than any of the previously identified d MMO2 analogues with the exception of d NaM . We also found that d NaM –d 5SICS is replicated by both Kf and Taq with rates approaching those of a natural base pair.  相似文献   
19.
We report the first IR characterization of a single C-D bond within a protein, methyl-d1 Met80 of horse heart cytochrome c. A comparison was made to methyl-d1/d3 methionine as well as methyl-d3 Met80. We found that for methyl-d1 and the asymmetric stretches of methyl-d3, line widths/line shapes are dominated by inhomogeneous broadening, whereas the symmetric stretch of methyl-d3 has a significant homogeneous component. Vibrational energy relaxation calculations found that a significantly stronger Fermi resonance exists for the symmetric stretch than for the asymmetric stretches, thereby suggesting that a difference in intramolecular vibrational relaxation (IVR) causes the observed line width/line shape difference between the symmetric and asymmetric stretches.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号