首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
化学   33篇
  2022年   2篇
  2021年   4篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2009年   2篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1995年   1篇
  1983年   2篇
排序方式: 共有33条查询结果,搜索用时 0 毫秒
31.
A stability‐indicating MEKC method was developed and validated for the simultaneous determination of aliskiren (ALI) and hydrochlorothiazide (HCTZ) in pharmaceutical formulations using ranitidine as an internal standard (IS). Optimal conditions for the separation of ALI, HCTZ and its major impurity chlorothiazide (CTZ), IS and degradation products were investigated. The method employed 47 mM Tris buffer and 47 mM anionic detergent SDS solution at pH 10.2 as the background electrolyte. MEKC method was performed on a fused‐silica capillary (40 cm) at 28°C. Applied voltage was 26 kV (positive polarity) and photodiode array (PDA) detector was set at 217 nm. The method was validated in accordance with the ICH requirements. The method was linear over the concentration range of 5–100 and 60–1200 μg/mL for HCTZ and ALI, respectively (r2>0.9997). The stability‐indicating capability of the method was established by enforced degradation studies combined with peak purity assessment using the PDA detection. Precision and accuracy evaluated by RSD were lower than 2%. The method proved to be robust by a fractional factorial design evaluation. The proposed MEKC method was successfully applied for the quantitative analysis of ALI and HCTZ both individually and in a combined dosage tablet formulation to support the quality control.  相似文献   
32.
A reversed-phase liquid chromatography (RP-LC) method is validated for the determination of aliskiren in tablet dosage form. The LC method is carried out on a Waters XBridge C(18) column (150 × 4.6 mm i.d.), maintained at 25°C. The mobile phase consisted of acetonitrile:water (95:5, v/v)/phosphoric acid (25 mM, pH 3.0) (40:60, v/v), run at a flow rate of 1.0 mL/min, with photodiode array detector set at 229 nm. The chromatographic separation is obtained with aliskiren retention time of 3.68 min, and it is linear in the range of 10-300 μg/mL (r = 0.9999). The limits of detection and quantitation are 2.38 and 7.93 μg/mL, respectively. The specificity and stability-indicating capability of the method are proven through degradation studies, which also showed that there is no interference of the formulation excipients, showing that peak is free from any coeluting peak. The method showed adequate precision, with a relative standard deviation (RSD) values lower than 0.92%. Good values of accuracy were also obtained, with a mean value of 99.55%. Experimental design is used during validation to calculate method robustness. The proposed method is applied for the analysis of the tablet dosage forms, contributing to improve the quality control and to assure the therapeutic efficacy.  相似文献   
33.
Diethylcarbamazine citrate (DEC) is the main drug used in the lymphatic filariasis treatment. This study aimed to evaluate drug-excipient compatibility of binary mixtures (BMs) (1:1, w/w), initially by differential scanning calorimetry (DSC), and subsequently, if there were any interaction evidence, by complementary techniques, such as thermogravimetric (TG), non-isothermal kinetics, Fourier transform infrared (FT-IR), and X-ray diffraction (XRD). For the analyses of the BMs by DSC, we selected those with Tabletose®, representing the excipients containing lactose, polivinilpirrolidona (PVP), and magnesium stearate (MgS). The additional analyses by FT-IR and XRD showed no interaction evidence. The TG curves of DEC–Tabletose® showed no signs of interaction, unlike the TG curves of PVP and MgS, confirming the results of non-isothermal kinetics, in which the BMs with PVP and MgS decreased the reaction activation energy. Thus, it was concluded after evaluation that the excipients, especially the PVP and MgS, should be avoided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号