Nerve gas mimic binding with Rhodamine B ethylenediamine (1) was studied in organic media. Binding of the nerve gas mimic, diethyl chlorophosphate (DCP), with the probe generated a non-fluorescent intermediate and a fluorescent product. Fluorescent and non-fluorescent products generated were identified using mass spectrometry and X-ray crystallography. Time-dependent density functional theory calculations were also used to investigate the electronic structure of the fluorescent probe in the ground and lowest lying π?→?π* singlet excited state. Though good agreement between theory and experiment can be obtained for the intense peak in the experimental spectrum using non-hybrid functionals, care must be taken when modelling these complexes due to the appearance of an n?→?π* transition that is too low in energy and appears to fall in the shoulders of the π?→?π* transitions.
The spin magnetic moment $\mu^{\overline{p}}_{s}$ of the antiproton can be determined by comparing the measured transition frequencies in $\overline{p}^4$He?+? with three-body QED calculations. A comparison between the proton and antiproton can then be used as a test of CPT invariance. The highest measurement precision of the difference between the proton and the antiproton spin magnetic moments to date is 0.3%. A new experimental value of the spin magnetic moment of the antiproton was obtained as $\mu^{\overline{p}}_{s} = -2.7862(83)\mu_{N}$, slightly better than the previously best measurement. This agrees with $\mu^{p}_{s}$ within 0.24%. In 2009, a new measurement with antiprotonic 3He has been started. A comparison between the theoretical calculations and experimental results would lead to a stronger test of the theory and address systematic errors therein. A measurement of this state will be the first HF measurement on $\overline{p}^3$He?+?. We report here on the new experimental setup and the first tests. 相似文献
We derive the coupling of a localized hexadecapolar mode to conduction electrons in tetragonal symmetry. The derivation can be easily adapted to arbitrary multipoles in an arbitrary environment. We relate our model to the two-channel Kondo (2CK) model and show that for an f(2) configuration a relevant crystal field splitting in addition to the 2CK interaction is intrinsic to tetragonal symmetry. We discuss possible realizations of a hexadecapolar Kondo effect in URu(2)Si(2). Solving our model we find good agreement with susceptibility and specific heat measurements in Th(1-x)U(x)Ru(2)Si(2) (x?1). 相似文献
The current status of the TwinMic beamline at Elettra synchrotron light source, that hosts the European twin X‐ray microscopy station, is reported. The X‐ray source, provided by a short hybrid undulator with source size and divergence intermediate between bending magnets and conventional undulators, is energy‐tailored using a collimated plane‐grating monochromator. The TwinMic spectromicroscopy experimental station combines scanning and full‐field imaging in a single instrument, with contrast modes such as absorption, differential phase, interference and darkfield. The implementation of coherent diffractive imaging modalities and ptychography is ongoing. Typically, scanning transmission X‐ray microscopy images are simultaneously collected in transmission and differential phase contrast and can be complemented by chemical and elemental analysis using across‐absorption‐edge imaging, X‐ray absorption near‐edge structure or low‐energy X‐ray fluorescence. The lateral resolutions depend on the particular imaging and contrast mode chosen. The TwinMic range of applications covers diverse research fields such as biology, biochemistry, medicine, pharmacology, environment, geochemistry, food, agriculture and materials science. They will be illustrated in the paper with representative results. 相似文献
Numerical simulations are used to investigate soliton-like propagation in tapered silicon core optical fibers. The simulations are based on a realistic tapered structure with nanoscale core dimensions and a decreasing anomalous dispersion profile to compensate for the effects of linear and nonlinear loss. An intensity misfit parameter is used to establish the optimum taper dimensions that preserve the pulse shape while reducing temporal broadening. Soliton formation from Gaussian input pulses is also observed--further evidence of the potential for tapered silicon fibers to find use in a range of signal processing applications. 相似文献
We designed and fabricated multilayer metal/metal-oxide surface relief diffractive grating structures by growing alternating Pt and SnO(x) layers. Optical interrogation at 633 nm reveals the temperature dependence of their reflection and transmission diffractive effects. This function is explored here in the context of a remote, spatially localized, photonic temperature sensing operation, achieving sensitivity of 10% per °C for the zeroth-order in the transmission mode. The experimental demonstration is found to be in good agreement with the results of rigorous coupled wave analysis of the composite metal/metal-oxide element. 相似文献
Existing theoretical models of evolution focus on the relative fitness advantages of different mutants in a population while the dynamic behavior of the population size is mostly left unconsidered. We present here a generic stochastic model which combines the growth dynamics of the population and its internal evolution. Our model thereby accounts for the fact that both evolutionary and growth dynamics are based on individual reproduction events and hence are highly coupled and stochastic in nature. We exemplify our approach by studying the dilemma of cooperation in growing populations and show that genuinely stochastic events can ease the dilemma by leading to a transient but robust increase in cooperation. 相似文献
The oblique impacts of nanoclusters are studied theoretically and by means of molecular dynamics. In simulations we explore two models--Lennard-Jones clusters and particles with covalently bonded atoms. In contrast with the case of macroscopic bodies, the standard definition of the normal restitution coefficient yields for this coefficient negative values for oblique collisions of nanoclusters. We explain this effect and propose a proper definition of the restitution coefficient which is always positive. We develop a theory of an oblique impact based on a continuum model of particles. A surprisingly good agreement between the macroscopic theory and simulations leads to the conclusion that macroscopic concepts of elasticity, bulk viscosity, and surface tension remain valid for nanoparticles of a few hundred atoms. 相似文献
Whereas several studies have used functional magnetic resonance imaging (fMRI) to investigate motor recovery, whether therapy to decrease post-stroke hypertonus alters central motor patterns remains unclear. In this study, we used continuous electromyography (EMG)-fMRI to investigate possible changes in movement-related brain activation in patients receiving Botulinum toxin (BoNT-A) for hand-muscle hypertonus after chronic stroke.
Methods
We studied eight stroke patients all of whom had hemiparesis and associated upper-limb hypertonus. All patients underwent an fMRI-EMG recording and clinical-neurological assessment before BoNT-A and 5 weeks thereafter. The handgrip motor task during imaging was fixed across both patients and controls. The movements were metronome paced, movement amplitude and force were controlled with a plastic orthosis, dynamometer and EMG recording. An age-matched control group was recruited from among healthy volunteers underwent the same fMRI-EMG recording.
Results
Before BoNT-A, while patients moved the paretic hand, fMRI detected wide bilateral activation in the sensorymotor areas (SM1), in the supplementary motor area (SMA) and cerebellum. After BoNT-A blood oxygenation level-dependent (BOLD) activation decreased in ipsilateral and contralateral motor areas and became more lateralized. BOLD activation decreased also in ipsilateral cerebellar regions and in the SMA.
Conclusion
Changes in peripheral upper-limb hypertonus after BoNT-A were associated to an improvement in active movements and more lateralized and focalized activation of motor areas. The clinical and EMG-fMRI coregistration technique we used to study hand-muscle hypertonus in patients receiving BoNT-A after chronic stroke should be useful in future studies seeking improved strategies for post-stroke neurorehabilitation. 相似文献