首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   5篇
化学   121篇
晶体学   4篇
力学   6篇
数学   11篇
物理学   43篇
  2023年   1篇
  2022年   2篇
  2021年   9篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   6篇
  2015年   4篇
  2014年   5篇
  2013年   9篇
  2012年   15篇
  2011年   12篇
  2010年   8篇
  2009年   6篇
  2008年   10篇
  2007年   11篇
  2006年   8篇
  2005年   8篇
  2004年   9篇
  2003年   9篇
  2002年   11篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1992年   2篇
  1986年   1篇
  1985年   1篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
排序方式: 共有185条查询结果,搜索用时 7 毫秒
81.
Carbon dioxide reforming (CDR) of methane to synthesis gas over supported nickel catalysts has been reviewed. The present review mainly focuses on the advantage of ceria based nickel catalysts for the CDR of methane. Nickel catalysts supported on ceria–zirconia showed the highest activity for CDR than nickel supported on other oxides such as zirconia, ceria and alumina. The addition of zirconia to ceria enhances the catalytic activity as well as the catalyst stability. The catalytic performance also depends on the crystal structure of Ni–Ce–ZrO2. For example, nickel catalysts co-precipitated with Ce0.8Zr0.2O2 having cubic phase gave synthesis gas with CH4 conversion more than 97% at 800 °C and the activity was maintained for 100 h during the reaction. On the contrary, Ni–Ce–ZrO2 having tetragonal phase (Ce0.8Zr0.2O2) or mixed oxide phase (Ce0.5Zr0.5O2) deactivated during the reaction due to carbon formation. The enhanced catalytic performance of co-precipitated catalyst is attributed to a combination effect of nano-crystalline nature of cubic Ce0.8Zr0.2O2 support and the finely dispersed nano size NiO x crystallites, resulting in the intimate contact between Ni and Ce0.8Zr0.2O2 particles. The Ni/Ce–ZrO2/θ–Al2O3 also exhibited high catalytic activity during CDR with a synthesis gas conversion more than 97% at 800 °C without significant deactivation for more than 40 h. The high stability of the catalyst is mainly ascribed to the beneficial pre-coating of Ce–ZrO2 resulting in the existence of stable NiO x species, a strong interaction between Ni and the support, and an abundance of mobile oxygen species in itself. TPR results further confirmed that NiO x formation was more favorable than NiO or NiAl2O4 formation and further results suggested the existence of strong metal-support interaction (SMSI) between Ni and the support. Some of the important factors to optimize the CDR of methane such as reaction temperature, space velocity, feed CO2/CH4 ratio and H2O and/or O2 addition were also examined.  相似文献   
82.
83.
In the chiral Co(III)(salen)-catalysed HKR of racemic epoxides, in the presence of ionic liquids, Co(II)(salen) complex is oxidised without acetic acid to catalytically active Co(III)(salen) complex during reaction and, moreover, this oxidation state is stabilised against reduction to Co(II) complex which enables the reuse of the recovered catalyst for consecutive reactions without extra reoxidation.  相似文献   
84.
Despite extensive efforts in experimental and computational studies, the microscopic understanding of dynamics of biological macromolecules remains a great challenge. It is known that hydrated proteins, DNA and RNA, exhibit a so-called "dynamic transition." It appears as a sharp rise of their mean-squared atomic displacements r2 at temperatures above 200-230 K. Even after a long history of studies, this sudden activation of biomolecular dynamics remains a puzzle and many contradicting models have been proposed. By combining neutron and dielectric spectroscopy data, we were able to follow protein dynamics over an extremely broad frequency range. Our results show that there is no sudden change in the dynamics of the protein at temperatures around approximately 200-230 K. The protein's relaxation time exhibits a smooth temperature variation over the temperature range of 180-300 K. Thus the experimentally observed sharp rise in r2 is just a result of the protein's structural relaxation reaching the limit of the experimental frequency window. The microscopic mechanism of the protein's structural relaxation remains unclear.  相似文献   
85.
In this study, porous ceramic fibers were prepared by the sol–gel-assisted electro-spinning process using colloidal dispersion of complex fluids for the application of phtotocatalysts. First, polystyrene nanospheres were synthesized by dispersion polymerization as sacrificial templates for porous fibers. Then, the mixture of polyvinylpyrrolidone and the ceramic precursor with the polymeric nanospheres was prepared as the spinning solution and self-organized by electro-spinning, followed by calcination of the electrospun composite fibers. The morphologies of the porous fibers could be controlled according to the size of the templates and the amount of the ceramic precursor. The nano-structure of the pores in the fibrous materials could also be adjusted as open or closed cavities with various potential applications. As a demonstrative application, the macroporous titania fibers could be utilized as photocatalysts for the removal of organic dyes dissolved in water. A better photocatalytic activity of the macroporous fibers with 700-nm pore diameter was observed compared to the result of nonporous titania fibers due to the increased porosity. Collectively, the macroporous ceramic fibers were found to be efficient functional materials to prepare the unique nano-structured materials other than simple nonporous fibers.  相似文献   
86.
87.
A novel graft copolymer consisting of a poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) backbone and poly(glycidyl methacrylate) side chains, that is, P(VDF‐co‐CTFE)‐g‐PGMA, was synthesized through atom transfer radical polymerization (ATRP) using CTFE units as a macroinitiator. Successful synthesis and microphase‐separated structure of the polymer were confirmed by 1H NMR, FTIR spectroscopy, and TEM. As‐synthesized P(VDF‐co‐CTFE)‐g‐PGMA copolymer was sulfonated by sodium bisulfite, followed by thermal crosslinking with sulfosuccinic acid (SA) via the esterification to produce grafted/crosslinked polymer electrolyte membranes. The IEC values continuously increased with increasing SA content but water uptake increased with SA content up to 10 wt %, above which it decreased again as a result of competitive effect between crosslinking and hydrophilicity of membranes. At 20 wt % of SA content, the proton conductivity reached 0.057 and 0.11 S/cm at 20 and 80 °C, respectively. The grafted/crosslinked P(VDF‐co‐CTFE)‐g‐PGMA/SA membranes exhibited good mechanical properties (>400 MPa of Young's modulus) and high thermal stability (up to 300 °C), as determined by a universal testing machine (UTM) and TGA, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1110–1117, 2010  相似文献   
88.
The weighted stochastic simulation algorithm (wSSA) was developed by Kuwahara and Mura [J. Chem. Phys. 129, 165101 (2008)] to efficiently estimate the probabilities of rare events in discrete stochastic systems. The wSSA uses importance sampling to enhance the statistical accuracy in the estimation of the probability of the rare event. The original algorithm biases the reaction selection step with a fixed importance sampling parameter. In this paper, we introduce a novel method where the biasing parameter is state-dependent. The new method features improved accuracy, efficiency, and robustness.  相似文献   
89.
A very efficient method is introduced to selectively align and uniformly separate λ-DNA molecules and thus DNA-templated gold nanowires (AuNW's) using a combination of molecular combing and surface-patterning techniques. By the method presented in this work, it is possible to obtain parallel and latticed nanostructures consisting of DNA molecules and thus DNA-templated AuNW's aligned at 400 nm intervals. DNA-templated AuNW's are uniformly formed with an average height of 2.5 nm. This method is expected to hold potential for the integration of nanosized building blocks applicable to nanodevice construction.  相似文献   
90.
Eddy currents are induced by the movement of a conductor through a stationary magnetic field or a time varying magnetic field through a stationary conductor. These currents circulate in the conductive material and are dissipated, causing a repulsive force between the magnet and the conductor. These electromagnetic forces can be used to suppress the vibrations of a flexible structure. A tuned mass damper is a device mounted in structures to reduce the amplitude of mechanical vibrations and is one of the effective vibration suppression methods. In the present study, an improved concept of this tuned mass damper for the vibration suppression of structures is introduced. This concept consists of the classical tuned mass damper and an eddy current damping. The important advantages of this magnetically tuned mass damper are that it is relatively simple to apply, it does not require any electronic devices and external power, and it is effective on the vibration suppression. The proposed concept is designed for a cantilever beam and the analytical studies on the eddy current damping and its effects on the vibration suppression. To show the effectiveness of the proposed concept and verify the eddy current damping model, experiments on a cantilever beam are performed. It is found that the proposed concept could significantly increase the damping effect of the tuned mass damper even if not adequately tuned.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号