全文获取类型
收费全文 | 3077篇 |
免费 | 116篇 |
国内免费 | 10篇 |
专业分类
化学 | 2245篇 |
晶体学 | 33篇 |
力学 | 89篇 |
数学 | 164篇 |
物理学 | 672篇 |
出版年
2023年 | 22篇 |
2022年 | 52篇 |
2021年 | 56篇 |
2020年 | 61篇 |
2019年 | 52篇 |
2018年 | 37篇 |
2017年 | 34篇 |
2016年 | 95篇 |
2015年 | 82篇 |
2014年 | 92篇 |
2013年 | 159篇 |
2012年 | 224篇 |
2011年 | 257篇 |
2010年 | 167篇 |
2009年 | 136篇 |
2008年 | 233篇 |
2007年 | 218篇 |
2006年 | 194篇 |
2005年 | 202篇 |
2004年 | 147篇 |
2003年 | 117篇 |
2002年 | 109篇 |
2001年 | 61篇 |
2000年 | 43篇 |
1999年 | 49篇 |
1998年 | 22篇 |
1997年 | 21篇 |
1996年 | 30篇 |
1995年 | 27篇 |
1994年 | 26篇 |
1993年 | 24篇 |
1992年 | 14篇 |
1991年 | 14篇 |
1990年 | 14篇 |
1989年 | 7篇 |
1988年 | 9篇 |
1987年 | 6篇 |
1986年 | 8篇 |
1985年 | 10篇 |
1984年 | 5篇 |
1983年 | 3篇 |
1982年 | 6篇 |
1980年 | 5篇 |
1979年 | 5篇 |
1978年 | 5篇 |
1977年 | 3篇 |
1976年 | 4篇 |
1974年 | 9篇 |
1973年 | 4篇 |
1938年 | 3篇 |
排序方式: 共有3203条查询结果,搜索用时 15 毫秒
121.
Jin Hong Park Dae Hyun Yoon Soo-Hyoung Lee Kyukwan Zong 《European Polymer Journal》2010,46(8):1790-3271
New thieno[3,4-b]thiophene derivatives were prepared via a short and versatile synthetic route. Electrochemical studies of 2-heptenylthieno[3,4-b]thiophene, 2-styrylthieno[3,4-b]thiophene, and 2-phenyl-3-(thieno[3,4-b]thiophene-2-yl)acrylonitrile and the corresponding polymers revealed that raising the HOMO and lowering the LUMO can be attained by functionalizing thieno[3,4-b]thiophene with aromatic resonance-enhancing and electron-withdrawing groups. The bandgap of resulting polymers varied from 0.78 to 1.0 eV, indicating that poly(2-phenyl-3-(thieno[3,4-b]thiophene-2-yl)acrylonitrile) is one of the lowest bandgap polymers ever reported. 相似文献
122.
Mi-Hyun Lee Bhari Mallanna Nagaraja Prakash Natarajan Ngoc Thanh Truong Kwan Young Lee Sungho Yoon Kwang-Deog Jung 《Research on Chemical Intermediates》2016,42(1):123-140
PtSn/θ-Al2O3 catalysts with different amounts of K (0.14, 0.22, 0.49, 0.72, and 0.96 wt%) are prepared to investigate the K effects on the PtSn catalyst in propane dehydrogenation (PDH). KPtSn catalyst with 0.xx wt% K, 0.5 wt% Pt and 0.75 wt% Sn is designated as xx-KPtSn. PDH was performed at 873 K and a gas hourly space velocity (GHSV) of 53,000 mL/gcat h. The temperature-programmed desorption (NH3-TPD), temperature-programmed reduction (TPR) and CO chemisorption of the KPtSn catalysts with K added revealed the potassium addition blocked the acid sites, promoted the reduction of Sn oxide and decreased the Pt dispersion. The formations of cracking products and higher hydrocarbons on acid sites were suppressed by the K effect of blocking the acid sites. In contrast, K addition at more than 0.72 wt% rather increased cracking products and the amount of coke, resulting in the severe deactivation of catalysts. The high cracking products on the KPtSn catalysts with the high amount of K should not be related to the acid sites, because the acid sites were monotonously decreased with an increase in the amount of K. Instead, the potassium affected the characteristics of PtSn. The interaction between Pt and Sn could be weakened by enriching the reduced Sn, because the K component promoted the reduction of Sn oxide in the TPR experiments. Therefore, the 14-KPtSn catalyst with the low amount of K exhibits the highest stability and selectivity among the prepared KPtSn catalysts due to the compromise of the advantageous (blocking the acid sites) and bad (weakening the interaction between Pt and Sn) effects of the K addition in PDH. 相似文献
123.
A highly sensitive nanomechanical cantilever sensor assay based on an electrical measurement has been developed for detecting activated cyclic adenosine monophosphate (cyclic AMP)-dependent protein kinase (PKA). Employing a peptide derived from the heat-stable protein kinase inhibitor (PKI), a magnetic bead system was first selected as a vehicle to immobilize the PKI-(5-24) peptide for capturing PKA catalytic subunit and the activity assay was applied for indirectly assessing the binding. Synergistic interactions of adenosine triphosphate (ATP) and the peptide inhibitor with the kinase were then investigated by a solution phase capillary electrophoretic assay, and by surface plasmon resonance technology which involved immobilization of the peptide inhibitor. After systemically evaluated by a homogeneous direct binding assay, the ATP-dependent recognition of the catalytic subunit of PKA by PKI-(5-24) was successfully transferred on to the nanomechanical cantilevers at protein concentrations of 6.6 pM-66 nM, exhibiting much higher sensitivity and wider dynamic range than the conventional activity assay. Thus, direct assessment of activated kinases using the cantilever sensor system functionalized with specific peptide inhibitors holds great promise in analytical applications and clinical medicine. 相似文献
124.
125.
126.
127.
128.
129.
130.
Dr. Shailima Rampogu Gihwan Lee Apoorva M. Kulkarni Donghwan Kim Sanghwa Yoon Prof. Myeong Ok Kim Prof. Keun Woo Lee 《ChemistryOpen》2021,10(5):593-599
Scientists all over the world are facing a challenging task of finding effective therapeutics for the coronavirus disease (COVID-19). One of the fastest ways of finding putative drug candidates is the use of computational drug discovery approaches. The purpose of the current study is to retrieve natural compounds that have obeyed to drug-like properties as potential inhibitors. Computational molecular modelling techniques were employed to discover compounds with potential SARS-CoV-2 inhibition properties. Accordingly, the InterBioScreen (IBS) database was obtained and was prepared by minimizing the compounds. To the resultant compounds, the absorption, distribution, metabolism, excretion and toxicity (ADMET) and Lipinski's Rule of Five was applied to yield drug-like compounds. The obtained compounds were subjected to molecular dynamics simulation studies to evaluate their stabilities. In the current article, we have employed the docking based virtual screening method using InterBioScreen (IBS) natural compound database yielding two compounds has potential hits. These compounds have demonstrated higher binding affinity scores than the reference compound together with good pharmacokinetic properties. Additionally, the identified hits have displayed stable interaction results inferred by molecular dynamics simulation results. Taken together, we advocate the use of two natural compounds, STOCK1N-71493 and STOCK1N-45683 as SARS-CoV-2 treatment regime. 相似文献