首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8423篇
  免费   268篇
  国内免费   22篇
化学   5818篇
晶体学   64篇
力学   200篇
数学   946篇
物理学   1685篇
  2023年   63篇
  2022年   194篇
  2021年   301篇
  2020年   211篇
  2019年   230篇
  2018年   197篇
  2017年   169篇
  2016年   342篇
  2015年   268篇
  2014年   352篇
  2013年   504篇
  2012年   571篇
  2011年   679篇
  2010年   419篇
  2009年   440篇
  2008年   575篇
  2007年   486篇
  2006年   442篇
  2005年   341篇
  2004年   285篇
  2003年   210篇
  2002年   191篇
  2001年   150篇
  2000年   122篇
  1999年   81篇
  1998年   78篇
  1997年   64篇
  1996年   62篇
  1995年   64篇
  1994年   59篇
  1993年   62篇
  1992年   61篇
  1991年   34篇
  1990年   32篇
  1989年   26篇
  1988年   28篇
  1987年   22篇
  1986年   21篇
  1985年   26篇
  1984年   26篇
  1983年   27篇
  1982年   17篇
  1981年   32篇
  1980年   16篇
  1979年   19篇
  1978年   20篇
  1977年   11篇
  1976年   17篇
  1975年   11篇
  1974年   13篇
排序方式: 共有8713条查询结果,搜索用时 174 毫秒
71.
Nystatin is a polyene antibiotic frequently applied in the treatment of topical fungal infections. In this work, a 7-nitrobenz-2-oxa-1,3-diazole (NBD) hexanoyl amide derivative of nystatin was synthesized and its detailed photophysical characterization is presented. The average conformation of the labelled antibiotic in tetrahydrofuran, ethanol and methanol was determined by intramolecular (tetraene to NBD) fluorescence resonance energy transfer measurements. At variance with the literature [Can. J. Chem. 63 (1985) 77-85], it was concluded that there is no need to invoke a solvent-dependent conformational equilibrium between extended and closed conformers of the antibiotic, because the mean tetraene-to-NBD separating distance was found to remain constant (approximately 18 A) in all the solvents studied. In addition, the large solvent dependence of the fluorescence anisotropy observed for the non-derivatized nystatin, was rationalized on the basis of the prolate ellipsoidal geometry of the molecule. It was concluded that the rod shaped and amphipathic antibiotic remains monomeric in different solvents within the concentration range studied (2-20 microM).  相似文献   
72.
The electrostatic complexation between beta-lactoglobulin and acacia gum was investigated at pH 4.2 and 25 degrees C. The binding isotherm revealed a spontaneous exothermic reaction, leading to a DeltaHobs = -2108 kJ mol(-1) and a saturation protein to polysaccharide weight mixing ratio of 2:1. Soluble electrostatic complexes formed in these conditions were characterized by a hydrodynamic diameter of 119 +/- 0.6 nm and a polydispersity index of 0.097. The effect of time on the interfacial and foaming properties of these soluble complexes was investigated at a concentration of 0.1 wt % at two different times after mixing (4 min, referred as t approximately 0 h and t = 24 h). At t approximately 0 h, the mixture is mainly made of aggregating soluble electrostatic complexes, whereas after 24 h these complexes have already insolubilize to form liquid coacervates. The surface elasticity, viscosity and phase angle obtained at low frequency (0.01 Hz) using oscillating bubble tensiometry revealed higher fluidity and less rigidity in the film formed at t approximately 0 h. This observation was confirmed by diminishing bubble experiments coupled with microscopy of the thin film. It was thicker, more homogeneous and contained more water at t approximately 0 h as compared to t = 24 h (thinner film, less water). This led to very different gas permeability's of Kt approximately 0 h = 0.021 cm s(-1) and Kt=24 h) = 0.449 cm s(-1), respectively. Aqueous foams produced with the beta-lactoglobulin/acacia gum electrostatic complexes or coacervates exhibited very different stability. The former (t approximately 0 h) had a stable volume, combining low drainage rate and mainly air bubble disproportionation as the destabilization mechanism. By contrast, using coacervates aged for 24 h, the foam was significantly less stable, combining fast liquid drainage and air bubble destabilization though fast gas diffusion followed by film rupture and bubble coalescence. The strong effect of time on the air/water interfacial properties of the beta-lactoglobulin/acacia gum electrostatic complexes can be understood by their reorganization at the interface to form a coacervate phase that is more fluid/viscous at t approximately 0 h vs rigid/elastic at t = 24 h.  相似文献   
73.
Dysregulation of proteolytic processing of the amyloid precursor protein (APP) contributes to the pathogenesis of Alzheimer's Disease, and the Group VIA phospholipase A(2) (iPLA(2)beta) is the dominant PLA(2) enzyme in the central nervous system and is subject to regulatory proteolytic processing. We have identified novel N-terminal variants of iPLA(2)beta and previously unrecognized proteolysis sites in APP constructs with a C-terminal 6-myc tag by automated identification of signature peptides in LC/MS/MS analyses of proteolytic digests. We have developed a Signature-Discovery (SD) program to characterize protein isoforms by identifying signature peptides that arise from proteolytic processing in vivo. This program analyzes MS/MS data from LC analyses of proteolytic digests of protein mixtures that can include incompletely resolved components in biological samples. This reduces requirements for purification and thereby minimizes artifactual modifications during sample processing. A new algorithm to generate the theoretical signature peptide set and to calculate similarity scores between predicted and observed mass spectra has been tested and optimized with model proteins. The program has been applied to the identification of variants of proteins of biological interest, including APP cleavage products and iPLA(2)beta, and such applications demonstrate the utility of this approach.  相似文献   
74.
A simple kinetic model predicting the concentration of oxygen atoms, metastable singlet molecules O2(a 1) and negative ions O — in the positive column of a DC glow discharge is developed. The calculated O and O2(a 1) concentrations are compared to previously reported measurements for pressuresp=0.2–2 Torr and discharge currentsI=10–80 mA. The electron density calculated from the continuity equationj=n e e v d agrees well with experiment. The rate coefficients for electron impact processes used in the balance equations of O, O2(a 1), and O were taken from the literature as a function of the reduced electric fieldE/N forE/N=40–80 Td. A reasonable agreement is obtained between the model and the experiment with a set of 10 reactions for the production and destruction of the above-mentioned species  相似文献   
75.
Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF). The mechanism of the formation of the aggregates in the nucleus remains uncertain. The present study demonstrated that the DNA-binding domain of p53 (p53C) underwent phase separation (PS) on the pathway to aggregation under various conditions. p53C phase separated in the presence of the crowding agent polyethylene glycol (PEG). Similarly, mutant p53C (M237I and R249S) underwent PS; however, the process evolved to a solid-like phase transition faster than that in the case of wild-type p53C. The data obtained by microscopy of live cells indicated that transfection of mutant full-length p53 into the cells tended to result in PS and phase transition (PT) in the nuclear compartments, which are likely the cause of the GoF effects. Fluorescence recovery after photobleaching (FRAP) experiments revealed liquid characteristics of the condensates in the nucleus. Mutant p53 tended to undergo gel- and solid-like phase transitions in the nucleus and in nuclear bodies demonstrated by slow and incomplete recovery of fluorescence after photobleaching. Polyanions, such as heparin and RNA, were able to modulate PS and PT in vitro. Heparin apparently stabilized the condensates in a gel-like state, and RNA apparently induced a solid-like state of the protein even in the absence of PEG. Conditions that destabilize p53C into a molten globule conformation also produced liquid droplets in the absence of crowding. The disordered transactivation domain (TAD) modulated both phase separation and amyloid aggregation. In summary, our data provide mechanistic insight into the formation of p53 condensates and conditions that may result in the formation of aggregated structures, such as mutant amyloid oligomers, in cancer. The pathway of mutant p53 from liquid droplets to gel-like and solid-like (amyloid) species may be a suitable target for anticancer therapy.

Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF).  相似文献   
76.
Reversible addition–fragmentation chain transfer (RAFT) dispersion polymerisation of methyl methacrylate (MMA) is performed in supercritical carbon dioxide (scCO2) with 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) present as chain transfer agent (CTA) and surprisingly shows good control over PMMA molecular weight. Kinetic studies of the polymerisation in scCO2 also confirm these data. By contrast, only poor control of MMA polymerisation is obtained in toluene solution, as would be expected for this CTA which is better suited for acrylates. In this regard, we select a range of CTAs and use them to determine the parameters that must be considered for good control in dispersion polymerisation in scCO2. A thorough investigation of the nucleation stage during the dispersion polymerisation reveals an unexpected “in situ two-stage” mechanism that strongly determines how the CTA works. Finally, using a novel computational solvation model, we identify a correlation between polymerisation control and degree of solubility of the CTAs. All of this ultimately gives rise to a simple, elegant and counterintuitive guideline to select the best CTA for RAFT dispersion polymerisation in scCO2.

RAFT dispersion polymerisation of methyl methacrylate is performed in scCO2 with 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) present as chain transfer agent (CTA) and surprisingly shows good control over PMMA molecular weight.  相似文献   
77.
In this work, we have studied the influence of the pH on the synthesis and structural properties of the Ba0.77Ca0.23TiO3 nanopowders synthesized by a modified polymeric precursor method, in order to achieve non-agglomerated powders. Synthesis, morphology, thermal reactions, crystallite and average particle size of the synthesized powders were investigated through thermal analysis (DTA/TG), X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and Infrared spectroscopy. In summary, Ba0.77Ca0.23TiO3 nanopowders were synthesized for the first time at a relative low temperature (500 °C). It was also found that the alkalinity and acidity of the solution presented a great influence on the powder properties. The best results were obtained from solutions with pH = 8.5 and 11 whose nanopowders presented weakly agglomerate, with homogeneous particle size and a narrow size distribution (30–40 nm). This behavior could be explained based on the FT-IR results in which it was possible to see the increased of the chelation in higher pHs.  相似文献   
78.
Following the studies on the effect of double bonds in the surfactant hydrophobic tail on the formation of mixed surfactant aggregates, we studied the viscosity and density of the system Sodium 10-undecenoate (SUD)–decyltrimethylammonium bromide (DTAB)–water. We found that the partial molar volume (pmv) and intrinsic viscosity of both, micellised and unmicellised mixtures, are non-ideal, dependent on the mixture composition and related to structural changes in micelles. These phenomena are caused by the presence of the double bond at the distal extreme of the SUD molecule, which has some affinity with water by formation of hydrogen bonds. In particular, as far as we know, this is the first report on non-ideal behavior of the pmv in mixed micelles.  相似文献   
79.
The molecular electrostatic potential (MEP) of the indole molecule was calculated in a three‐dimensional grid in which the molecule was centered at the origin. To evaluate the dependence of MEP on the type of calculation, semiempirical, ab initio, and density functional theory methods with different basis sets were employed. The data matrix generated by these calculations was analyzed by principal component analysis (PCA). The appearance of outliers and the effect of wavefunction modifications such as the introduction of electron correlations and diffuse functions were highlighted by the use of PCA. The spatial localization of such effects around the molecule was possible from the loadings values associated with the graphical analysis of the grid points. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   
80.
Hybrid organic-inorganic nanocomposites containing uniform distributions of metal nanoparticles have been prepared by mixing a preformed nanoparticle colloid with the precursors of a ureasil, prior to the sol-gel transition. These nanocomposites possess not only high optical quality and optical features dictated by the size and shape of the nanoparticle dopants but also a high degree of flexibility, which can largely enhance the range of applications in practical devices. The deposition of a uniform silica shell on the nanoparticle surface prior to the sol-gel transition was found to be required to maintain the colloidal stability during the process and, thus, to retain the optical properties in the final nanocomposite material. This method can be readily extended to other materials, such as semiconductor and magnetic nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号