首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   845篇
  免费   31篇
  国内免费   3篇
化学   516篇
晶体学   3篇
力学   25篇
数学   169篇
物理学   166篇
  2024年   2篇
  2023年   10篇
  2022年   24篇
  2021年   37篇
  2020年   27篇
  2019年   27篇
  2018年   19篇
  2017年   15篇
  2016年   37篇
  2015年   35篇
  2014年   42篇
  2013年   57篇
  2012年   67篇
  2011年   65篇
  2010年   35篇
  2009年   43篇
  2008年   53篇
  2007年   52篇
  2006年   43篇
  2005年   32篇
  2004年   23篇
  2003年   16篇
  2002年   20篇
  2001年   9篇
  2000年   10篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   7篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1991年   7篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1975年   1篇
  1973年   2篇
  1967年   1篇
  1962年   2篇
  1956年   1篇
排序方式: 共有879条查询结果,搜索用时 15 毫秒
41.
Mixed fermentation using Starmerella bacillaris and Saccharomyces cerevisiae has gained attention in recent years due to their ability to modulate the qualitative parameters of enological interest, such as the color intensity and stability of wine. In this study, three of the most important red Apulian varieties were fermented through two pure inoculations of Saccharomyces cerevisiae strains or the sequential inoculation of Saccharomyces cerevisiae after 48 h from Starmerella bacillaris. The evolution of anthocyanin profiles and chromatic characteristics were determined in the produced wines at draining off and after 18 months of bottle aging in order to assess the impact of the different fermentation protocols on the potential color stabilization and shelf-life. The chemical composition analysis showed titratable acidity and ethanol content exhibiting marked differences among wines after fermentation and aging. The 48 h inoculation delay produced wines with higher values of color intensity and color stability. This was ascribed to the increased presence of compounds, such as stable A-type vitisins and reddish/violet ethylidene-bridge flavonol-anthocyanin adducts, in the mixed fermentation. Our results proved that the sequential fermentation of Starmerella bacillaris and Saccharomyces cerevisiae could enhance the chromatic profile as well as the stability of the red wines, thus improving their organoleptic quality.  相似文献   
42.
The intake of tomato glycoalkaloids can exert beneficial effects on human health. For this reason, methods for a rapid quantification of these compounds are required. Most of the methods for α-tomatine and dehydrotomatine quantification are based on chromatographic techniques. However, these techniques require complex and time-consuming sample pre-treatments. In this work, HPLC-ESI-QqQ-MS/MS was used as reference method. Subsequently, multiple linear regression (MLR) and partial least squares regression (PLSR) were employed to create two calibration models for the prediction of the tomatine content from thermogravimetric (TGA) and attenuated total reflectance (ATR) infrared spectroscopy (IR) analyses. These two fast techniques were proven to be suitable and effective in alkaloid quantification (R2 = 0.998 and 0.840, respectively), achieving low errors (0.11 and 0.27%, respectively) with the reference technique.  相似文献   
43.
44.
Linear conjugated oligothiophenes of variable length and different substitution pattern are ubiquitous in technologically advanced optoelectronic devices, though limitations in application derive from insolubility, scarce processability and chain‐end effects. This study describes an easy access to chiral cyclic oligothiophenes constituted by 12 and 18 fully conjugated thiophene units. Chemical oxidation of an “inherently chiral” sexithiophene monomer, synthesized in two steps from commercially available materials, induces the formation of an elliptical dimer and a triangular trimer endowed with electrosensitive cavities of different tunable sizes. Combination of chirality with electroactivity makes these molecules unique in the current oligothiophenes literature. These macrocycles, which are stable and soluble in most organic solvents, show outstanding chiroptical properties, high circularly polarized luminescence effects and an exceptional enantiorecognition ability.  相似文献   
45.
Anatomical and physico-chemical properties of residual natural fibers (sugarcane bagasse, coconut fibers and peanut hulls) were characterized in order to evaluate their potential for use in the production of particleboard. The bulk density was determined by helium pycnometer and the chemical characteristics by using an electronic pH meter (for pH determination) on fibers dissolved in acidic and neutral detergents (to determine the levels of cellulose, hemicellulose and lignin). The anatomical characteristics were established using scanning electron microscopy coupled with an X-ray detector system, as well as energy dispersive X-ray spectroscopy. Results indicated similarities and differences between physico-chemical and anatomical characteristics of the residual lignocellulosic fibers when compared with the Pinus sp. wood commercially employed in particleboard production. Bulk density and pH for residual lignocellulosic fibers and Pinus sp. wood presented analogous values. Similar amounts of cellulose and lignin were identified between waste fibers and Pinus sp. wood. The presence of silica was identified in coconut fiber, peanut hull and sugarcane bagasse waste fibers, and may affect the mechanical characteristics of panels. Coconut and sugarcane bagasse fibers show surface pores with diameters ranging from 1.2 to 2.1 μm, below the 5 μm identified for Pinus sp. wood. Both fibers present pores distributed over their entire surface, whereas peanut hull fibers have no pores on their surface. This characteristic contributes to resin dispersion among particles, reflecting positively on the physical–mechanical properties of the panels. Particleboards produced with residual lignocellulosic fibers present similar physical–mechanical properties to those of Pinus sp. wood panels.  相似文献   
46.
Thin films of barium fluorides with different thicknesses were deposited on GaAs substrate by electron beam evaporation. The aim of the work was to identify the best growth conditions for the production of coatings with a low work function suitable for the anode of hybrid thermionic-photovoltaic (TIPV) devices. The chemical composition and work function φ of the films with different thicknesses were investigated by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). The lowest value of φ = 2.1 eV was obtained for the film with a thickness of ~2 nm. In the valence band spectra of the films at low kinetic energy, near the cutoff, a characteristic peak of negative electron affinity was present. This effect contributed to a further reduction of the film's work function.  相似文献   
47.
Cr martensitic steels are promising materials for structural applications in future nuclear fusion reactors. Because the embrittlement after tempering treatments can be a serious problem, the fracture mode of a steel with 10.5 wt% of Cr treated at 700°C for 18 h has been investigated through Charpy tests in the temperature range from −100°C to +150°C. X-ray photoelectron spectroscopy (XPS) analyses carried out on the fracture surfaces evidenced the segregation of Cr in both ductile and brittle (quasicleavage) fields. The unexpected result indicates that Cr segregation weakens the atomic bonds; thus, the fracture path in both the cases corresponds to the zones with higher Cr content.  相似文献   
48.
Recent discoveries about functional mechanisms of proteins in the TMEM16 family of phospholipid scramblases have illuminated the dual role of the membrane as both the substrate and a mechanistically responsive environment in the wide range of physiological processes and genetic disorders in which they are implicated. This is highlighted in the review of recent findings from our collaborative investigations of molecular mechanisms of TMEM16 scramblases that emerged from iterative functional, structural, and computational experimentation. In the context of this review, we present new MD simulations and trajectory analyses motivated by the fact that new structural information about the TMEM16 scramblases is emerging from cryo-EM determinations in lipid nanodiscs. Because the functional environment of these proteins in in vivo and in in vitro is closer to flat membranes, we studied comparatively the responses of the membrane to the TMEM16 proteins in flat membranes and nanodiscs. We find that bilayer shapes in the nanodiscs are very different from those observed in the flat membrane systems, but the function-related slanting of the membrane observed at the nhTMEM16 boundary with the protein is similar in the nanodiscs and in the flat bilayers. This changes, however, in the bilayer composed of longer-tail lipids, which is thicker near the phospholipid translocation pathway, which may reflect an enhanced tendency of the long tails to penetrate the pathway and create, as shown previously, a nonconductive environment. These findings support the correspondence between the mechanistic involvement of the lipid environment in the flat membranes, and the nanodiscs. © 2019 Wiley Periodicals, Inc.  相似文献   
49.
Solute–solvent interactions are proxies for understanding how the electronic density of a chromophore interacts with the environment in a more exhaustive way. The subtle balance between polarization, electrostatic, and non-bonded interactions need to be accurately described to obtain good agreement between simulations and experiments. First principles approaches providing accurate configurational sampling through molecular dynamics may be a suitable choice to describe solvent effects on solute chemical–physical properties and spectroscopic features, such as optical absorption of dyes. In this context, accurate energy potentials, obtained by hybrid implicit/explicit solvation methods along with employing nonperiodic boundary conditions, are required to represent bulk solvent around a large solute–solvent cluster. In this work, a novel strategy to simulate methanol solutions is proposed combining ab initio molecular dynamics, a hybrid implicit/explicit flexible solvent model, nonperiodic boundary conditions, and time dependent density functional theory. As case study, the robustness of the proposed protocol has been gauged by investigating the microsolvation and electronic absorption of the anionic green fluorescent protein chromophore in methanol and aqueous solution. Satisfactory results are obtained, reproducing the microsolvation layout of the chromophore and, as a consequence, the experimental trends shown by the optical absorption in different solvents.  相似文献   
50.
Structure‐based drug development is often hampered by the lack of in vivo activity of promising compounds screened in vitro, due to low membrane permeability or poor intracellular binding selectivity. Herein, we show that ligand screening can be performed in living human cells by “intracellular protein‐observed” NMR spectroscopy, without requiring enzymatic activity measurements or other cellular assays. Quantitative binding information is obtained by fast, inexpensive 1H NMR experiments, providing intracellular dose‐ and time‐dependent ligand binding curves, from which kinetic and thermodynamic parameters linked to cell permeability and binding affinity and selectivity are obtained. The approach was applied to carbonic anhydrase and, in principle, can be extended to any NMR‐observable intracellular target. The results obtained are directly related to the potency of candidate drugs, that is, the required dose. The application of this approach at an early stage of the drug design pipeline could greatly increase the low success rate of modern drug development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号