首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   12篇
化学   240篇
晶体学   5篇
力学   3篇
数学   25篇
物理学   84篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   11篇
  2017年   2篇
  2016年   7篇
  2015年   7篇
  2014年   7篇
  2013年   14篇
  2012年   17篇
  2011年   18篇
  2010年   10篇
  2009年   13篇
  2008年   14篇
  2007年   14篇
  2006年   15篇
  2005年   12篇
  2004年   12篇
  2003年   13篇
  2002年   16篇
  2001年   9篇
  2000年   9篇
  1999年   7篇
  1998年   9篇
  1997年   13篇
  1996年   9篇
  1995年   11篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   9篇
  1979年   4篇
  1978年   3篇
  1977年   5篇
  1976年   3篇
  1975年   5篇
  1974年   3篇
  1973年   6篇
  1971年   1篇
  1918年   2篇
排序方式: 共有357条查询结果,搜索用时 31 毫秒
51.
Laser Induced Breakdown Spectroscopy (LIBS) is an advanced analytical technique for elemental determination based on direct measurement of optical emission of excited species on a laser induced plasma. In the realm of elemental analysis, LIBS has great potential to accomplish direct analysis independently of physical sample state (solid, liquid or gas). Presently, LIBS has been easily employed for qualitative analysis, nevertheless, in order to perform quantitative analysis, some effort is still required since calibration represents a difficult issue. Artificial neural network (ANN) is a machine learning paradigm inspired on biological nervous systems. Recently, ANNs have been used in many applications and its classification and prediction capabilities are especially useful for spectral analysis. In this paper an ANN was used as calibration strategy for LIBS, aiming Cu determination in soil samples. Spectra of 59 samples from a heterogenic set of reference soil samples and their respective Cu concentration were used for calibration and validation. Simple linear regression (SLR) and wrapper approach were the two strategies employed to select a set of wavelengths for ANN learning. Cross validation was applied, following ANN training, for verification of prediction accuracy. The ANN showed good efficiency for Cu predictions although the features of portable instrumentation employed. The proposed method presented a limit of detection (LOD) of 2.3 mg dm− 3 of Cu and a mean squared error (MSE) of 0.5 for the predictions.  相似文献   
52.
The formation of a noncovalent triblock copolymer based on a coiled-coil peptide motif is demonstrated in solution. A specific peptide pair (E and K) able to assemble into heterocoiled coils was chosen as the middle block of the polymer and conjugated to poly(ethylene glycol) (PEG) and polystyrene (PS) as the outer blocks. Mixing equimolar amounts of the polymer-peptide block copolymers PS-E and K-PEG resulted in the formation of coiled-coil complexes between the peptides and subsequently in the formation of the amphiphilic triblock copolymer PS-E/K-PEG. Aqueous self-assembly of the separate peptides (E and K), the block copolymers (PS-E and K-PEG), and equimolar mixtures thereof was studied by circular dichroism, dynamic light scattering, and cryogenic transmission electron microscopy. It was found that the noncovalent PS-E/K-PEG copolymer assembled into rodlike micelles, while in all other cases, spherical micelles were observed. Temperature-dependent studies revealed the reversible nature of the coiled-coil complex and the influence of this on the morphology of the aggregate. A possible mechanism for these transitions based on the interfacial free energy and the free energy of the hydrophobic blocks is discussed. The self-assembly of the polymer-peptide conjugates is compared to that of polystyrene-b-poly(ethylene glycol), emphasizing the importance of the coiled-coil peptide block in determining micellar structure and dynamic behavior.  相似文献   
53.
54.
Understanding solvation in hydrofluoroalkane (HFA) propellants is of great importance for the development of novel pressurized metered-dose inhaler (pMDI) formulations. HFA-based pMDIs are not only the most widely used inhalation therapy devices for treating lung diseases, but they also hold promise as vehicles for the systemic delivery of biomolecules to and through the lungs. In this work we propose a combined microscopic experimental and computational approach to quantitatively relate the chemistry of moieties to their HFA-philicity. Binding energy calculations are used to determine the degree of interaction between a propellant HFA and candidate fragments. We define a new quantity, the enhancement factor E, which also takes into account fragment-fragment interactions. This quantity is expected to correlate well with the solubility and the ability of the moieties of interest to impart stability to colloidal dispersions in HFAs. We use a methyl-based (CH) segment and its fluorinated analog (CF) to test our approach. CH is an important baseline case since it represents the tails of surfactants in FDA-approved pMDIs. CF was chosen due to the improved solubility and ability of this chemistry to stabilize aqueous dispersions in HFAs. Adhesion force from Chemical Force Microscopy (CFM) is used as an experimental analog to the binding energy calculations. The force of interaction between a chemically modified AFM tip and substrate is measured in a model HFA, which is a liquid at ambient conditions. Silanes with the same chemistry as the fragments used in the ab initio calculations allow for direct comparison between the two techniques. The CFM results provide an absolute scale for HFA-philicity. Single molecule (pair) forces calculated from the CFM experiments are shown to be in very good agreement to the E determined from the ab initio calculations. The ab initio calculations and CFM are corroborated by previous experimental studies where propellants HFAs are seen to better solvate the CF functionality.  相似文献   
55.
A series of multiarm star-branched polyisobutylenes was synthesized from narrow polydispersity arms with molecular weights ranging from 12,000 to 60,000 g/mol, via living carbocationic polymerization using the cumyl chloride/TiCl4/pyridine initiating system and divinylbenzene (DVB) as core-forming comonomer. The effect on star development of arm molecular weight, temperature, solvent composition, and DVB concentration was studied. The rate of star formation and the weight-average number of arms per star polymer, N̄w, were found to scale inversely with arm molecular weight; N̄w = 60 was attained for 13,100 g/mol arms, but N̄w = 2.5 for 60,000 g/mol arms. It was established that star formation was much faster at −80°C compared to 23°C, regardless of solvent composition. For hexane : methyl chloride (MeCl) solvent compositions containing from 40 to 60 vol % MeCl, star–star coupling was observed at −80°C, but not at 23°C, even after 312 h; for the most polar 40 : 60 hexane : MeCl composition, star–star coupling was so extensive at −80°C that gelation was observed after only 44 h. The rate of star formation was found to be substantially higher in 60 : 40 hexane : MeCl compared to 60 : 40 hexane : methylene chloride (MeCl2). Some reactions containing MeCl were immediately warmed to 23°C after DVB addition, and the MeCl thus volatilized was replaced with either MeCl2 or hexane for the duration of the star-forming reaction. Slightly higher rates were consistently observed when MeCl2 was the replacement solvent. The strong influence of initial MeCl content on rate of star formation was found to persist throughout the star-forming reaction, even when the solvent was immediately converted to 100% hexane. The fraction of arms that remained unlinked into stars was found to be higher at the higher temperature and at lower solvent polarity. Regardless of solvent or temperature, the residual arm fraction was approximately the same at a given stage of star development as measured by the average number of arms per star. One star sample was produced with the UV-transparent 2-chloro-2,4,4-trimethylpentane initiator; analysis showed that the residual arm fraction had approximately the same UV absorbance as the star fraction, indicating efficient crossover to DVB and the potential for approximately quantitative arm incorporation given sufficient time. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36 : 471–483, 1998  相似文献   
56.
Independent one-, two-, and even three-dimensional nets interpenetrate each other in many solid-state structures of polymeric, hydrogen-bonded nets and coordination polymers. For example, the interpenetration of the adamantane units of two diamondlike nets is shown on the right. A detailed and systematic examination of many interpenetrating nets of this kind is made, and implications for crystal engineering are discussed.  相似文献   
57.
Framework integrity is retained when water molecules replace the nitromethane molecules in the coordination polymer [Ag(hat)ClO4]⋅2 CH3NO2 (see picture for structure), which are arranged in a helical fashion within the chiral micropores of the three-dimensional [Ag(hat)+]n network with a (10,3)-a topology. Remarkably, this is also the case after subsequent displacement of the water by nitromethane molecules. hat=1,4,5,8,9,12-hexaazatriphenylene.  相似文献   
58.
59.
60.
Let's get together : A minimal model system was developed to mimic the SNARE‐protein‐mediated fusion of biological membranes (see picture). Fusion between two populations of liposomes is controlled by a pair of complementary lipidated oligopeptides that form noncovalent coiled‐coil complexes and thereby force the membranes into close proximity to promote fusion. The model system displays the key characteristics of in vivo fusion events.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号