首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   868篇
  免费   28篇
  国内免费   2篇
化学   791篇
晶体学   2篇
力学   11篇
数学   35篇
物理学   59篇
  2021年   7篇
  2020年   7篇
  2018年   5篇
  2017年   6篇
  2016年   12篇
  2015年   14篇
  2014年   19篇
  2013年   27篇
  2012年   32篇
  2011年   65篇
  2010年   20篇
  2009年   19篇
  2008年   44篇
  2007年   61篇
  2006年   84篇
  2005年   59篇
  2004年   55篇
  2003年   40篇
  2002年   39篇
  2001年   17篇
  2000年   14篇
  1999年   15篇
  1998年   7篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   7篇
  1990年   15篇
  1989年   10篇
  1988年   12篇
  1987年   9篇
  1986年   7篇
  1985年   9篇
  1984年   6篇
  1983年   4篇
  1981年   3篇
  1980年   3篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1975年   10篇
  1974年   14篇
  1973年   11篇
  1972年   9篇
  1971年   9篇
  1970年   13篇
  1969年   10篇
  1968年   9篇
  1967年   6篇
  1966年   4篇
排序方式: 共有898条查询结果,搜索用时 296 毫秒
101.
A second polymorph of the hydrochloride salt of the recreational drug ethylone, C12H16NO3+·Cl, is reported [systematic name: (±)‐2‐ethylammonio‐1‐(3,4‐methylenedioxyphenyl)propane‐1‐one chloride]. This polymorph, denoted form (A), appears in crystallizations performed above 308 K. The originally reported form (B) [Wood et al. (2015). Acta Cryst. C 71 , 32–38] crystallizes preferentially at room temperature. The conformations of the cations in the two forms differ by a 180° rotation about the C—C bond linking the side chain to the aromatic ring. Hydrogen bonding links the cations and anions in both forms into similar extended chains in which any one chain contains only a single enantiomer of the chiral cation, but the packing of the ions is different. In form (A), the aromatic rings of adjacent chains interleave, but pack equally well if neighbouring chains contain the same or opposite enantiomorph of the cation. The consequence of this is then near perfect inversion twinning in the structure. In form (B), neighbouring chains are always inverted, leading to a centrosymmetric space group. The question as to why the polymorphs crystallize at slightly different temperatures has been examined by density functional theory (DFT) and lattice energy calculations and a consideration of packing compactness. The free energy (ΔG) of the crystal lattice for polymorph (A) lies some 52 kJ mol−1 above that of polymorph (B).  相似文献   
102.
High resolution mass spectrometry is a key technology for in-depth protein characterization. High-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) enables high-level interrogation of intact proteins in the most detail to date. However, an appropriate complement of fragmentation technologies must be paired with FTMS to provide comprehensive sequence coverage, as well as characterization of sequence variants, and post-translational modifications. Here we describe the integration of front-end electron transfer dissociation (FETD) with a custom-built 21 tesla FT-ICR mass spectrometer, which yields unprecedented sequence coverage for proteins ranging from 2.8 to 29 kDa, without the need for extensive spectral averaging (e.g., ~60% sequence coverage for apo-myoglobin with four averaged acquisitions). The system is equipped with a multipole storage device separate from the ETD reaction device, which allows accumulation of multiple ETD fragment ion fills. Consequently, an optimally large product ion population is accumulated prior to transfer to the ICR cell for mass analysis, which improves mass spectral signal-to-noise ratio, dynamic range, and scan rate. We find a linear relationship between protein molecular weight and minimum number of ETD reaction fills to achieve optimum sequence coverage, thereby enabling more efficient use of instrument data acquisition time. Finally, real-time scaling of the number of ETD reactions fills during method-based acquisition is shown, and the implications for LC-MS/MS top-down analysis are discussed.
Graphical Abstract ?
  相似文献   
103.
Contact electrification creates an invisible mark, overlooked and often undetected by conventional surface spectroscopic measurements. It impacts our daily lives macroscopically during electrostatic discharge and is equally relevant on the nanoscale in areas such as soft lithography, transfer, and printing. This report describes a new conceptual approach to studying and utilizing contact electrification beyond prior surface force apparatus and point-contact implementations. Instead of a single point contact, our process studies nanocontact electrification that occurs between multiple nanocontacts of different sizes and shapes that can be formed using flexible materials, in particular, surface-functionalized poly(dimethylsiloxane) (PDMS) stamps and other common dielectrics (PMMA, SU-8, PS, PAA, and SiO(2)). Upon the formation of conformal contacts and forced delamination, contacted regions become charged, which is directly observed using Kelvin probe force microscopy revealing images of charge with sub-100-nm lateral resolution. The experiments reveal chemically driven interfacial proton exchange as the dominant charging mechanism for the materials that have been investigated so far. The recorded levels of uncompensated charges approach the theoretical limit that is set by the dielectric breakdown strength of the air gap that forms as the surfaces are delaminated. The macroscopic presence of the charges is recorded using force-distance curve measurements involving a balance and a micromanipulator to control the distance between the delaminated objects. Coulomb attraction between the delaminated surfaces reaches 150 N/m(2). At such a magnitude, the force finds many applications. We demonstrate the utility of printed charges in the fields of (i) nanoxerography and (ii) nanotransfer printing whereby the smallest objects are ~10 nm in diameter and the largest objects are in the millimeter to centimeter range. The printed charges are also shown to affect the electronic properties of contacted surfaces. For example, in the case of a silicon-on-insulator field effect transistors are in contact with PDMS and subsequent delamination leads to threshold voltage shifts that exceed 500 mV.  相似文献   
104.
Gold octahedra with hollow features have been synthesized in high yield via the controlled overgrowth of preformed concave cube seeds. This Ag(+)-assisted, seed-mediated synthesis allows for the average edge length of the octahedra and the size of the hollow features to be independently controlled. We propose that a high concentration of Ag(+) stabilizes the {111} facets of the octahedra through underpotential deposition while the rate of Au(+) reduction controls the dimensions of the hollow features. This synthesis represents a highly controllable bottom-up approach for the preparation of hollow gold nanostructures.  相似文献   
105.
This work explores the sensitization of luminescent lanthanide Tb(3+) and Eu(3+) cations by the electronic structure of zinc sulfide (ZnS) semiconductor nanoparticles. Excitation spectra collected while monitoring the lanthanide emission bands reveal that the ZnS nanoparticles act as an antenna for the sensitization of Tb(3+) and Eu(3+). The mechanism of lanthanide ion luminescence sensitization is rationalized in terms of an energy and charge transfer between trap sites and is based on a semiempirical model, proposed by Dorenbos and co-workers (Dorenbos, P. J. Phys.: Condens. Matter 2003, 15, 8417-8434; J. Lumin. 2004, 108, 301-305; J. Lumin. 2005, 111, 89-104. Dorenbos, P.; van der Kolk, E. Appl. Phys. Lett. 2006, 89, 061122-1-061122-3; Opt. Mater. 2008, 30, 1052-1057. Dorenbos, P. J. Alloys Compd. 2009, 488, 568-573; references 1-6.) to describe the energy level scheme. This model implies that the mechanisms of luminescence sensitization of Tb(3+) and Eu(3+) in ZnS nanoparticles are different; namely, Tb(3+) acts as a hole trap, whereas Eu(3+) acts as an electron trap. Further testing of this model is made by extending the studies from ZnS nanoparticles to other II-VI semiconductor materials; namely, CdSe, CdS, and ZnSe.  相似文献   
106.
The presence of aryl sulfides in biologically active compounds has resulted in the development of new methods to form carbon-sulfur bonds. The synthesis of aryl sulfides via metal catalysis has significantly increased in recent years. Historically, thiolates and sulfides have been thought to plague catalyst activity in the presence of transition metals. Indeed, strong coordination of thiolates and thioethers to transition metals can often hinder catalytic activity; however, various catalysts are able to withstand catalyst deactivation and form aryl carbon-sulfur bonds in high-yielding transformations. This review discusses the metal-catalyzed arylation of thiols and the use of disulfides as metal-thiolate precursors for the formation of C-S bonds.  相似文献   
107.
Three new briarane diterpenoids, briareolate esters L-N (1-3), have been isolated from a gorgonian Briareum asbestinum. Briareolate esters L (1) and M (2) are the first natural products possessing a 10-membered macrocyclic ring with a (E,Z)-dieneone and exhibit growth inhibition activity against both human embryonic stem cells (BG02) and a pancreatic cancer cell line (BxPC-3). Briareolate ester L (1) was found to contain a "spring-loaded" (E,Z)-dieneone Michael acceptor group that can form a reversible covalent bond to model sulfur-based nucleophiles.  相似文献   
108.
Luminescent metal-organic frameworks (MOFs), Ln(3+)@bio-MOF-1, were synthesized via postsynthetic cation exchange of bio-MOF-1 with Tb(3+), Sm(3+), Eu(3+), or Yb(3+), and their photophysical properties were studied. We demonstrate that bio-MOF-1 encapsulates and sensitizes visible and near-infrared emitting lanthanide cations in aqueous solution.  相似文献   
109.
Flow field-flow fractionation (FlFFF) with on-line UV/Visible diode array detector (DAD) and excitation emission matrix (EEM) fluorescence detector has been developed for the characterization of optical properties of aquatic dissolved organic matter (DOM) collected in the Otonabee River (Ontario, Canada) and Athabasca River (Alberta, Canada). The molecular weight (MW) distribution of DOM was estimated using a series of organic macromolecules ranging from 479 to 66,000 Da. Both the number-average (Mn) and weight-average (Mw) molecular weights of Suwannee River fulvic acid (SRFA) and Suwannee River humic acid (SRHA) determined using these macromolecular standards were comparable to those obtained using polystyrenesulfonate (PSS) standards, suggesting that organic macromolecules can be used to estimate MW of natural organic colloids. The MW of eight river DOM samples determined by this method was found to have an Mn range of 0.8–1.1 kDa, which agrees with available literature estimates. The FlFFF-DAD-EEM system provided insight into the MW components of river DOM including the optical properties by on-line absorbance and fluorescence measurement. A red-shift in emission and excitation wavelength maxima associated with lower spectral slope ratios (SR = S275–295:S350–400) was related to higher MW DOM. However, DOM of different origins at similar MW also showed significant difference in optical properties. A difference of 47 and 40 nm in excitation and emission peak C maxima was found. This supports the hypothesis that river DOM is not uniform in size and optical composition.  相似文献   
110.
A series of 4,9‐dihydropyrrolo[2,1‐b]quinazolines containing electron withdrawing groups at the 3‐position have been prepared by the palladium‐catalyzed intramolecular N‐arylation of some 2‐aminopyrroles having a 2‐bromobenzyl group at the N‐1 position. Important for success of the reaction is the use of X‐phos, a biphenyl mono‐phosphine ligand, instead of xantphos, a more standard diphosphine ligand, and the use of t‐BuOH as reaction solvent. J. Heterocyclic Chem., (2011).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号