首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24498篇
  免费   577篇
  国内免费   141篇
化学   16725篇
晶体学   123篇
力学   575篇
数学   4334篇
物理学   3459篇
  2022年   177篇
  2021年   259篇
  2020年   301篇
  2019年   317篇
  2018年   234篇
  2017年   194篇
  2016年   482篇
  2015年   453篇
  2014年   490篇
  2013年   1300篇
  2012年   1139篇
  2011年   1429篇
  2010年   727篇
  2009年   709篇
  2008年   1256篇
  2007年   1280篇
  2006年   1255篇
  2005年   1212篇
  2004年   1052篇
  2003年   912篇
  2002年   818篇
  2001年   352篇
  2000年   279篇
  1999年   250篇
  1998年   280篇
  1997年   307篇
  1996年   362篇
  1995年   243篇
  1994年   280篇
  1993年   264篇
  1992年   237篇
  1991年   240篇
  1990年   191篇
  1989年   231篇
  1988年   237篇
  1987年   202篇
  1986年   195篇
  1985年   291篇
  1984年   337篇
  1983年   218篇
  1982年   366篇
  1981年   336篇
  1980年   316篇
  1979年   318篇
  1978年   323篇
  1977年   294篇
  1976年   280篇
  1975年   250篇
  1974年   248篇
  1973年   235篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Manganese oxide (MnOx) electrocatalysts are examined herein by in situ soft X‐ray absorption spectroscopy (XAS) and resonant inelastic X‐ray scattering (RIXS) during the oxidation of water buffered by borate (pH 9.2) at potentials from 0.75 to 2.25 V vs. the reversible hydrogen electrode. Correlation of L‐edge XAS data with previous mechanistic studies indicates MnIV is the highest oxidation state involved in the catalytic mechanism. MnOx is transformed into birnessite at 1.45 V and does not undergo further structural phase changes. At potentials beyond this transformation, RIXS spectra show progressive enhancement of charge transfer transitions from oxygen to manganese. Theoretical analysis of these data indicates increased hybridization of the Mn?O orbitals and withdrawal of electron density from the O ligand shell. In situ XAS experiments at the O K‐edge provide complementary evidence for such a transition. This step is crucial for the formation of O2 from water.  相似文献   
992.
An assessment of the data processing and analysis methods used to obtain the second- and fourth-rank orientational order parameters of liquid crystals from X-ray scattering experiments has been carried out, using experimental data from four extensively studied alkyl-cyanobiphenyls and calculated data generated from two general types of theoretical orientational distribution function. The application of a background subtraction and two different baseline correction methods to the scattering profiles is assessed, along with three different methods to analyse the processed data. The choice of baseline correction method is shown to have a significant effect: an offset to zero overestimates the order parameters from the experimental and calculated data sets, particularly for lower order parameters arising from broad distributions, whereas an offset to a value estimated from regions of low scattering intensity provides experimental values close to those reported from other experimental techniques. By contrast, the three different analysis methods are shown generally to result in relatively small absolute differences between the order parameters. We outline a straightforward general approach to experimental X-ray scattering data processing and analysis for uniaxial phases that results in order parameters that match well with those reported using other experimental techniques.  相似文献   
993.
Conversion of CO2 into valuable molecules is a field of intensive investigation with the aim of developing scalable technologies for making fuels using renewable energy sources. While electrochemical reduction into CO and formate are approaching industrial maturity, a current challenge is obtaining more reduced products like methanol. However, literature on the matter is scarce, and even more for the use of molecular catalysts. Here, we demonstrate that cobalt phthalocyanine, a well‐known catalyst for the electrochemical conversion of CO2 to CO, can also catalyze the reaction from CO2 or CO to methanol in aqueous electrolytes at ambient conditions of temperature and pressure. The studies identify formaldehyde as a key intermediate and an unexpected pH effect on selectivity. This paves the way for establishing a sequential process where CO2 is first converted to CO which is subsequently used as a reactant to produce methanol. Under ideal conditions, the reaction shows a global Faradaic efficiency of 19.5 % and chemical selectivity of 7.5 %.  相似文献   
994.
Soft materials possess several distinctive characteristics, such as controllable deformation, infinite degrees of freedom, and self‐assembly, which make them promising candidates for building soft machines, robots, and haptic interfaces. In this Review, we give an overview of recent advances in these areas, with an emphasis on two specific topics: bio‐inspired design and additive manufacturing. Biology is an abundant source of inspiration for functional materials and systems that mimic the function or mechanism of biological tissues, agents, and behaviors. Additive manufacturing has enabled the fabrication of materials and structures prevalent in biology, thereby leading to more‐capable soft robots and machines. We believe that bio‐inspired design and additive manufacturing have been, and will continue to be, important tools for the design of soft robots.  相似文献   
995.
The electronic and structural properties of Au/ZnO under industrial and idealized methanol synthesis conditions have been investigated. This was achieved by kinetic measurements in combination with time‐resolved operando infrared (DRIFTS) as well as in situ near‐ambient pressure X‐ray photoelectron spectroscopy (NAP‐XPS) and X‐ray absorption near‐edge spectroscopy (XANES) measurements at the O K‐edge together with high‐resolution electron microscopy. The adsorption of CO during the reaction revealed the presence of negatively charged Au nanoparticles/Au sites during the initial phase of the reaction. Near‐ambient‐pressure XPS and XANES demonstrate the build‐up of O vacancies during the reaction, which goes along with a substantial increase in the rate of methanol formation. The results are discussed in comparison with previous findings for Cu/ZnO and Au/ZnO catalysts.  相似文献   
996.
997.
The direct conversion of syngas to ethanol, typically using promoted Rh catalysts, is a cornerstone reaction in CO2 utilization and hydrogen storage technologies. A rational catalyst development requires a detailed structural understanding of the activated catalyst and the role of promoters in driving chemoselectivity. Herein, we report a comprehensive atomic‐scale study of metal–promoter interactions in silica‐supported Rh, Rh–Mn, and Rh–Mn–Fe catalysts by aberration‐corrected (AC) TEM. While the catalytic reaction leads to the formation of a Rh carbide phase in the Rh–Mn/SiO2 catalyst, the addition of Fe results in the formation of bimetallic Rh–Fe alloys, which further improves the selectivity and prevents the carbide formation. In all promoted catalysts, Mn is present as an oxide decorating the metal particles. Based on the atomic insight obtained, structural and electronic modifications induced by promoters are revealed and a basis for refined theoretical models is provided.  相似文献   
998.
We describe a chemoenzymatic strategy that can give a library of differentially fucosylated and sialylated oligosaccharides starting from a single chemically synthesized tri‐N‐acetyllactosamine derivative. The common precursor could easily be converted into 6 different hexasaccharides in which the glucosamine moieties are either acetylated (GlcNAc) or modified as a free amine (GlcNH2) or Boc (GlcNHBoc). Fucosylation of the resulting compounds by a recombinant fucosyl transferase resulted in only modification of the natural GlcNAc moieties, providing access to 6 selectively mono‐ and bis‐fucosylated oligosaccharides. Conversion of the GlcNH2 or GlcNHBoc moieties into the natural GlcNAc, followed by sialylation by sialyl transferases gave 12 differently fucosylated and sialylated compounds. The oligosaccharides were printed as a microarray that was probed by several glycan‐binding proteins, demonstrating that complex patterns of fucosylation can modulate glycan recognition.  相似文献   
999.
It was the aim of this study to compare the performance of displacement chromatography with gradient elution chromatography both applied as the cation-exchange separation step for a proteome analysis in a bottom-up approach using multidimensional chromatography for the separation of tryptic peptides prior to their mass spectrometric analysis. The tryptic digest of the human Cohn fraction IV-4 served as a sample. For both chromatography modes commonly used operating parameters were chosen thus ensuring optimal separation results of equal sample amounts for each mode. All resulting fractions were analyzed with an HPLC-chip–LC–MS system. The eluate of the HPLC-chip column was ionized by electrospray ionization (ESI) and analyzed with an ion-trap mass spectrometer. For guaranteeing high confidence concerning the identity of the peptides, the mass spectrometric data were processed by different bioinformatic tools applying stringent criteria. By the displacement approach the total amount of identified proteins (78) was significantly higher than in the gradient mode (58). The results showed that displacement chromatography is a well suited alternative in comparison to gradient elution separation for analysis of proteomes via the bottom-up approach applying multidimensional chromatography, especially in those cases when larger quantities of proteins are available.  相似文献   
1000.
Quality control of cacao beans is a significant issue in the chocolate industry. In this report, we describe how moisture damage to cacao beans alters the volatile chemical signature of the beans in a way that can be tracked quantitatively over time. The chemical signature of the beans is monitored via sampling the headspace of the vapor above a given bean sample. Headspace vapor sampled with solid-phase micro-extraction (SPME) was detected and analyzed with comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC–TOFMS). Cacao beans from six geographical origins (Costa Rica, Ghana, Ivory Coast, Venezuela, Ecuador, and Panama) were analyzed. Twenty-nine analytes that change in concentration levels via the time-dependent moisture damage process were measured using chemometric software. Biomarker analytes that were independent of geographical origin were found. Furthermore, prediction algorithms were used to demonstrate that moisture damage could be verified before there were visible signs of mold by analyzing subsets of the 29 analytes. Thus, a quantitative approach to quality screening related to the identification of moisture damage in the absence of visible mold is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号