首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   1篇
化学   66篇
晶体学   1篇
力学   7篇
数学   35篇
物理学   25篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2016年   1篇
  2013年   5篇
  2012年   9篇
  2011年   10篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   7篇
  2006年   7篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   5篇
  1998年   1篇
  1996年   1篇
  1995年   5篇
  1993年   1篇
  1992年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   6篇
  1982年   2篇
  1981年   1篇
  1979年   3篇
  1972年   1篇
  1971年   1篇
  1970年   3篇
  1968年   2篇
  1967年   1篇
  1962年   1篇
  1939年   1篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
101.
A commercial mixture of conjugated linoleic acid (CLA) isomers, reportedly consisting of six components, was recently resolved into 12 peaks attributed to CLA isomers using silver-ion high performance liquid chromatography (Ag+-HPLC). In this study, the coupling of two analytical silver-ion high performance liquid chromatography columns (tandem-column Ag+-HPLC) in series led to the enhanced resolution of CLA isomers. Many CLA isomers were baseline resolved and the pair 18 : 2 8,10 c/t and 18 : 2 7,9 c/t found in cheese products, was resolved for the first time. In this work, a similar commercial CLA mixture was separated into 16 peaks, while CLA isomers from cheese also gave rise to 16 peaks. As expected, the CLA isomers were separated into three geometric groups in the order trans,trans, cis/trans, and cis,cis. Semi-preparative Ag+-HPLC, followed by gas chromatography–mass spectroscopy of the dimethyloxazoline derivatives, was used to confirm the identity of the newly resolved positional CLA isomers. The double bond configuration of CLA isomers was established by gas chromatography–Fourier transform infrared spectroscopy. Two minor t,t CLA isomers found in cheese, presumably 18 : 2 t6t8 and 18 : 2 t13t15, were also separated. The CLA isomeric composition of 16 commercial cheese products was determined.  相似文献   
102.
Recent studies of retinal damage due to ultrashort laser pulses have shown that less energy is required for retinal damage for pulses shorter than 1 ns than that for longer pulses. It has also been shown that more energy is required for near-infrared (NIR) wavelengths than in the visible because the light focuses behind the retina, requiring more energy to produce a damaging fluence on the retina. We review the progress made in determining the trends in retinal damage from laser pulses of 1 ns to 100 fs in the visible and NIR wavelength regimes. We have determined the most likely damage mechanism(s) operative in this pulse width regime.  相似文献   
103.
104.
105.
106.
SU-8 is an epoxy-novolac resin and a well-established negative photoresist for microfabrication and microengineering. The photopolymerized resist is an extremely highly crosslinked polymer showing outstanding chemical and physical robustness with residual surface epoxy groups amenable for chemical functionalization. In this paper we describe, for the first time, the preparation and surface modification of SU-8 particles shaped as microbars, the attachment of appropriate linkers, and the successful application of these particles to multistep solid-phase synthesis leading to oligonucleotides and peptides attached in an unambiguous manner to the support surface.  相似文献   
107.
Wall adsorption is a common problem in microfluidic devices, particularly when proteins are used. Here we show how superhydrophobic surfaces can be used to reduce protein adsorption and to promote desorption. Hydrophobic surfaces, both smooth and having high surface roughness of varying length scales (to generate superhydrophobicity), were incubated in protein solution. The samples were then exposed to flow shear in a device designed to simulate a microfluidic environment. Results show that a similar amount of protein adsorbed onto smooth and nanometer-scale rough surfaces, although a greater amount was found to adsorb onto superhydrophobic surfaces with micrometer scale roughness. Exposure to flow shear removed a considerably larger proportion of adsorbed protein from the superhydrophobic surfaces than from the smooth ones, with almost all of the protein being removed from some nanoscale surfaces. This type of surface may therefore be useful in environments, such as microfluidics, where protein sticking is a problem and fluid flow is present. Possible mechanisms that explain the behaviour are discussed, including decreased contact between protein and surface and greater shear stress due to interfacial slip between the superhydrophobic surface and the liquid.  相似文献   
108.
109.
Bead-based immunoassays using a micro-chip flow cytometer   总被引:2,自引:0,他引:2  
Holmes D  She JK  Roach PL  Morgan H 《Lab on a chip》2007,7(8):1048-1056
A microfabricated flow cytometer has been developed for the analysis of micron-sized polymer beads onto which fluorescently labelled proteins have been immobilised. Fluorescence measurements were made on the beads as they flowed through the chip. Binding of antibodies to surface-immobilised antigens was quantitatively assayed using the device. Particles were focused through a detection zone in the centre of the flow channel using negative dielectrophoresis. Impedance measurements of the particles (at 703 kHz) were used to determine particle size and to trigger capture of the fluorescence signal. Antibody binding was measured by fluorescence at single and dual excitation wavelengths (532 nm and 633 nm). Fluorescence compensation techniques were implemented to correct for spectral overspill between optical detection channels. The data from the microfabricated flow cytometer was shown to be comparable to that of a commercial flow cytometer (BD-FACSAria).  相似文献   
110.
NiSO(4) and FeSO(4) self-assemble with heteroditopic ligands (L) comprising 2,2'-bipyridine and o-phenylene-(bis)urea cation- and anion-binding sites, respectively, into [ML(3)SO(4)] (M = Ni(2+), Fe(2+)) triple-stranded ion-pair helicates and mesocates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号