首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   1篇
化学   42篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2002年   5篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1974年   1篇
  1973年   2篇
排序方式: 共有42条查询结果,搜索用时 78 毫秒
31.
A new form of controlled growth free radical polymerization leading to narrow polydispersity polymers and/or block copolymers is described. The process is based on the polymerization of monomers in the presence of macromonomers of general structure CH2=C(Z)CH2(A)n [(A)n= radical leaving group, Z = activating group] and displays many of the characteristics of living polymerizations. The process is most suited to methacrylic monomers but with the appropriate choice of reaction conditions (high temperatures and/or low conversions) it can also be applied to acrylic and styrenic monomers. The macromonomers are conveniently prepared by catalytic chain transfer to alkyl cobalt(III) complexes or by addition-fragmentation chain transfer. The factors which determine the efficiency of cobalt complexes for molecular weight reduction in free radical emulsion and solution polymerization of methyl methacrylate are also discussed.  相似文献   
32.
The free radical polymerization of four methylated cyclic allylic sulfides was examined with reference to their polymerization volume shrinkage and the effect of ring size on reactivity. The compounds examined were 2‐methyl‐5‐methylene‐1,3‐dithiane ( 5 ) (solid), 2‐methyl‐6‐methylene‐1,4‐dithiepane ( 6 ) (liquid), 6‐methyl‐3‐methylene‐1,5‐dithiacyclooctane ( 7 ) (liquid), and 6,8‐dimethyl‐3‐methylene‐1,5‐dithiacyclooctane ( 8 ) (liquid). The monomers were stable materials not requiring any special handling or storage conditions. They were polymerized in bulk using thermal azobisisobutyronitrile (AIBN, VAZO88) and photochemical initiators (Ciba DAROCUR 1173) and in benzene solutions (AIBN, 70 °C). The six‐membered ring monomer 5 was unreactive whereas seven‐membered ring monomer 6 polymerized to high conversion in bulk. In addition, 6 did not polymerize in benzene solution at 70 °C at [ 6 ] = 1.25M. Eight‐membered ring monomers 7 and 8 polymerized in bulk to complete conversion with thermal and photochemical initiators to give lightly crosslinked materials. Near complete conversion to soluble polymers could be obtained in solution polymerizations in benzene. Soluble polymers were also obtained in photochemical initiated bulk polymerizations by lowering initiator concentrations or length of irradiation. The methyl substituent had no effect on which allylic carbon–sulfur bond fragmented in the ring‐opening step. The polymerization volume shrinkages of monomers 7 and 8 were 1.5 and 2.4% respectively and together with monomer 4 (1.5–2.0% shrinkage) are the best available liquid free radical ring‐opening monomers that can be polymerized in bulk at room temperature. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 202–215, 2001  相似文献   
33.
34.
The maleation of conventional and metallocene linear low density polyethylenes by reactive extrusion has been explored with a view to defining the conditions necessary for a robust process that provides both high grafting efficiencies (>80%) and minimal degradation or cross-linking. The dependence of grafting efficiency on various operating parameters (maleic anhydride level, maleic anhydride:initiator ratio, throughput rate, direction of screw rotation, temperature) has been established. Literature methods for characterization of the grafted product based on FTIR or 1H NMR analysis have been critically examined with respect to their ability to distinguish between single unit and oligomeric maleic anhydride grafts and found to yield ambiguous results.  相似文献   
35.
The primary mechanism for living polymerisation under a source of gamma radiation at low dose rates is shown to be reversible addition‐fragmentation chain transfer. This was demonstrated by showing that the initial transfer step determines the success of the polymerisation. When an inappropriate leaving group is chosen for the RAFT agent, the polymerisation is non‐living. Under a reversible termination mechanism the ‘living’‐ness should be independent of this initial transfer step.  相似文献   
36.
37.
Multi-functional mikto-arm star polymers containing three different arms [hydrophilic, SN-38-P(OEGMA8–9)11, cationizable, SN-38-P(DMAEMA)38 and hydrophobic, SN-38-P(BMA)26] were prepared by RAFT polymerization via an arm-first approach using a cleavable cross-linker. The star polymers were cleaved to the linear arms with tributylphosphine as a reducing agent. The decrease in molecular weight observed is consistent with the initial stars having approximately five arms. Blue fluorescence was observed when a solution of mikto-arm star was irradiated under a 365 nm light proving the retention of the SN-38 moiety during star formation by RAFT polymerization. Thus these polymer-drug conjugates can be considered as potential delivery vehicles for cancer therapy. The P(DMAEMA) arms can be quaternized using iodomethane, allowing star polymers to bind negatively charged small interfering RNA (siRNA) and potentially be used as a carrier for that material.  相似文献   
38.
Polymers prepared by RAFT polymerisation containing acenaphthyl energy donors and a terminal anthryl energy acceptor have a narrow molecular weight distribution and exhibit excitation energy transfer efficiencies up to 70%.  相似文献   
39.
Abstract

The free-radical copolymerization of ω-unsaturated oligo(methyl methacrylate) (1) with each of ethyl acrylate, styrene, methyl methacrylate, acrylonitrile, and vinyl acetate have been investigated. Incorporation of (1) into the polymer was observed in all cases although the molecular weights of the copolymers were substantially lower than those of the homopolymers obtained in the absence of (1) but under otherwise identical conditions. These experiments, together with a product study of the reactions of (1) with cyanoisopropyl radicals, have shown that the addition of free radicals to the double bond of (1) occurs readily. The sterically hindered radical so formed, however, undergoes facile β-scission, resulting in the termination of chains (chain transfer) in competition with chain propagation. The implications of these findings to the usefulness of (1) in the synthesis of graft copolymers and their relevance to the chemistry of free-radical polymerizations when methyl methacrylate is employed as a monomer or comonomer are discussed.  相似文献   
40.
Hydroxy radical-initiated poly(methyl methacrylate) and polystyrene have been reacted with o-sulfobenzoic anhydride to produce dye-active sulfonate groups and these were measured by a dye-partition technique with methylene blue. The important advantages over chlorosulfonic acid, previously employed in the dye-partition analysis for the conversion of hydroxy into sulfate groups, are that o-sulfobenzoic anhydride does not react at sites other than the hydroxy functionality and that it introduces the dye-active moiety (sulfonate) into the polymer via a hydrolytically more stable linkage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号