首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   296篇
  免费   15篇
化学   201篇
晶体学   8篇
力学   9篇
数学   14篇
物理学   79篇
  2024年   1篇
  2023年   3篇
  2022年   22篇
  2021年   25篇
  2020年   22篇
  2019年   15篇
  2018年   17篇
  2017年   7篇
  2016年   11篇
  2015年   8篇
  2014年   16篇
  2013年   16篇
  2012年   22篇
  2011年   21篇
  2010年   9篇
  2009年   15篇
  2008年   16篇
  2007年   13篇
  2006年   11篇
  2005年   7篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2000年   3篇
  1999年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有311条查询结果,搜索用时 15 毫秒
31.
Molecular dynamics simulations in slab geometry and surface tension measurements were performed for aqueous solutions of magnesium acetate and magnesium nitrate at various concentrations. The simulations reveal a strong affinity of acetate anions for the surface, while nitrate exhibits only a very weak surface propensity, and magnesium is per se strongly repelled from the air/water interface. CH3COO- also exhibits a much stronger tendency than NO3- for ion pairing with Mg2+ in the bulk and particularly in the interfacial layer. The different interfacial behavior of the two anions is reflected by the opposite concentration dependence (beyond 0.5 M) of surface tension of the corresponding magnesium salts. Measurements, supported by simulations, show that the surface tension of Mg(NO3)2(aq) increases with concentration as for other inorganic salts. However, in the case of Mg(OAc)2(aq) the surface tension isotherm exhibits a turnover around 0.5 M, after which it starts to decrease, indicating a positive net solute excess in the interfacial layer at higher concentrations.  相似文献   
32.
Electron paramagnetic resonance (EPR)-based oximetry is capable of quantifying oxygen content in samples. However, for a heterogeneous environment with multiple pO2 values, peak-to-peak linewidth of the composite EPR lineshape does not provide a reliable estimate of the overall pO2 in the sample. The estimate, depending on the heterogeneity, can be severely biased towards narrow components. To address this issue, we suggest a postprocessing method to recover the linewidth histogram which can be used in estimating meaningful parameters, such as the mean and median pO2 values. This information, although not as comprehensive as obtained by EPR spectral-spatial imaging, goes beyond what can be generally achieved with conventional EPR spectroscopy. Substantially shorter acquisition times, in comparison to EPR imaging, may prompt its use in clinically relevant models. For validation, simulation and EPR experiment data are presented.  相似文献   
33.
The purpose of the present study is to determine the elemental composition of Pakistani cement brands using calibration-free laser induced breakdown spectroscopy (CF-LIBS) and to compare the obtained results with the other analytical techniques such as, laser ablation – time-of-flight – mass spectrometry (LA-TOF-MS), energy dispersive X-ray spectrometry (EDX), X-ray fluorescence spectroscopy (XRF) and proton induced X-ray emission spectrometry (PIXE). Compositional results reveal that all the cement brands are mainly composed of calcium, silicon, iron, aluminum, magnesium, potassium, sodium, titanium, lithium and strontium with varying concentrations. The compositions obtained by LIBS and LA-TOF-MS are in good agreement with results obtained by the other standard techniques and demonstrate the potential use of LIBS for the online monitoring of industrial cement production.  相似文献   
34.
35.
A range of conventional, i.e. maceration, percolation, ultrasonic assisted, Soxhlet and Soxtec extraction (STE), to advanced extraction techniques of accelerated solvent extraction (ASE) was utilized for the first time in order to optimize the extract yield and recovery of phenolics—gallic acid (GA), rutin (RT) and quercetin (QT)—quantified via ultra-high performance liquid chromatography with diode array detector (UHPLC–DAD). The effect of solvents (n-hexane, dichloromethane and methanol) and temperature (60, 80 and 100°C) upon extraction yield, phenolic content and antioxidant activity (DPPH, ABTS and DPPH) was studied, and the method was validated in commercial food samples from Saudi Arabia, China and India. A high extract yield with percentage recovery was observed for STE (1221.10 mg/5 g; 24.42%) and ASE techniques (91.50 mg/1 g; 9.15%) in methanol at 100°C. UHPLC–DAD showed retention times (min) of 0.67, 1.93 and 1.90 for GA, RT and QT, respectively in the shortest runtime of 3 min. The yield for phenolics was higher for STE/ASE (ppm): 15.27/15.29 (GA), 85.24/37.56 (RT) and 52.20/33.40 (QT), respectively. In terms of antioxidant activities, low IC50 values (μg/ml) of 1.09/1.18 (DPPH), 2.11/5.32 (ABTS) and 4.35/7.88 (phenazine methosulfate–nicotinamide adenine dinucleotide) were observed for STE and ASE, respectively. Multivariate analysis for STE showed a significant (P = 0.000) correlation for extraction type vs. extract yield and phenolics content; however, there was no significance for antioxidant activities vs. extraction type. ASE showed a positive correlation for solvent vs. extraction yield, phenolics and antioxidant activity; however, there was no correlation for extraction yield and DPPH activity. Principal component analysis for STE showed a major variability (52.02%) for extraction yield and phenolics in PC1 followed by PC2 (38.30%) for antioxidant activities. For ASE, PC1 (48.68%) showed a positive correlation for solvent vs. extraction yield and phenolics while PC2 (33.12%) showed a positive correlation for temperature and antioxidant activities. STE and ASE were the optimized extraction techniques for the garlic food sample while a significant effect of solvent and temperature was observed upon extraction yield, phenolics and antioxidant activity.  相似文献   
36.
The present paper reports the investigation of surface morphology, elemental composition, phase changes and field emission properties of Si ion irradiated nickel (Ni) and titanium (Ti). The Ni and Ti targets have been irradiated with 500 keV Si ions generated by Pelletron accelerator at various fluences ranging from 6.9 × 1013 to 77.1 × 1013 ions/cm2. Stopping range of ions in matter analysis revealed higher values of electronic stopping and sputtering yield for Ni as compared with Ti. For both irradiated metals, electronic energy loss dominant over the nuclear stopping. The growth of induced surface structures have been analysed by using field emission scanning electron microscopy (FESEM) analysis. In case of Ni, as the ion fluence increases from 6.9 × 1013 to 65.8 × 1013 ions/cm2, the formation of spherical particulates, agglomers and sputtering is observed. Although in the case of Ti, with the increase of Si ion fluence from 11.6 × 1013 to 77.1 × 1013 ions/cm2, the formation of irregular-shaped particulates along with crater and sputtered channels is observed. X-ray diffraction (XRD) analysis shows that no new phase is identified. However, a significant increase in peak intensity is observed with increasing ion fluence. The variation in crystallite size and dislocation line density is also observed as a function of Si ion fluence. Fourier transform infrared spectroscopy analysis shows that no bands are formed after the Si ion irradiation. Field emission properties of ion-structured Ni and Ti are well correlated with the growth of surface structures observed by SEM and dislocation line density evaluated by XRD analysis.  相似文献   
37.
The development and production of fossil fuel alternatives have become one of the main focal points in recent investigations. Lignocellulosic biomass is a renewable source of fermentable sugars for second-generation biofuels and chemicals via biotechnological pathways. However, the presence of lignin and hemicellulose in lignocellulosic biomass makes it difficult for the biomass to be hydrolyzed or digested during fermentation. Thus, effective biomass pretreatment is vital. The present review shows that chemical pretreatment is the current preferred method to obtain high sugar yields at low cost, with dilute acid and alkaline hydrolysis as the two most reported technologies. Dilute acid favours hydrolysis of the hemicelluloses whereas alkaline hydrolysis targets the lignin fraction. Both methods have merits and demerits, and have been combined with other treatments such as hydrothermal and enzymatic hydrolysis. Further investigation is required to improve the pretreatment processes and to ensure the economic viability of bioconversion.  相似文献   
38.
Endometritis is the inflammatory response of the endometrial lining of the uterus and is associated with low conception rates, early embryonic mortality, and prolonged inter-calving intervals, and thus poses huge economic losses to the dairy industry worldwide. Ginsenoside Rb1 (GnRb1) is a natural compound obtained from the roots of Panax ginseng, having several pharmacological and biological properties. However, the anti-inflammatory properties of GnRb1 in lipopolysaccharide (LPS)-challenged endometritis through the TLR4-mediated NF-κB signaling pathway has not yet been researched. This study was planned to evaluate the mechanisms of how GnRb1 rescues LPS-induced endometritis. In the present research, histopathological findings revealed that GnRb1 ameliorated LPS-triggered uterine injury. The ELISA and RT-qPCR assay findings indicated that GnRb1 suppressed the expression level of pro-inflammatory molecules (TNF-α, IL-1β and IL-6) and boosted the level of anti-inflammatory (IL-10) cytokine. Furthermore, the molecular study suggested that GnRb1 attenuated TLR4-mediated NF-κB signaling. The results demonstrated the therapeutic efficacy of GnRb1 in the mouse model of LPS-triggered endometritis via the inhibition of the TLR4-associated NF-κB pathway. Taken together, this study provides a baseline for the protective effect of GnRb1 to treat endometritis in both humans and animals.  相似文献   
39.
In this paper, a Structural Health Monitoring (SHM) technique for damage identification in beam-like and truss structures using Frequency Response Function (FRF) data coupled with optimization techniques is presented. Genetic Algorithm (GA) and Bat Algorithm (BA) are used to estimate the location and severity of damage. The damage in the structures is simulated by reduction in rigidity of specific members. Both optimization techniques are coupled with modelled structures using Finite Element Method (FEM). The approach is based on minimizing an objective function by comparing measured and calculated FRFs. The results show that better accuracy is obtained using BA than using GA in terms of precision and computational time. Furthermore, it is found that the proposed approach provides faster solution than other approaches in the literature.  相似文献   
40.
The present study describes the green method for the preparation of chitosan loaded with silver nanoparticles (CS‐AgNPs) in the presence of 3 different extracted essential oils. The essential oils play dual roles as reductant and capping agents. The reducing power and DPPH (2,2‐diphenyl‐1‐picrylhydrazyl) assay for the 3 essential oils—Thymus syriacus (T), wild mint (M), and rosemary (R)—have been reported. The preparation of CS‐AgNPs was performed by 2 steps. The 3 previously extracted essential oils have been used as reducing and capping agent in the first step, while in the second step, silver nanoparticles were integrated in chitosan. The integration of AgNPs in the structure of chitosan was confirmed by ultraviolet‐visible, Fourier transform infrared spectroscopy, scanning electron microscopy techniques, and energy dispersive X‐ray. Surface plasmon resonance confirmed the formation of CS‐AgNPs with maximum absorbance at λmax between 405 ‐ 410 and 410 ‐ 430 nm for colloidal and films of CS‐AgNPs, respectively. The intensity of bands at 3408 cm?1 in the fourier transform infrared spectroscopy measurements was decreased substantially and shifted slightly to lower frequency (?υ = 43 cm?1). Scanning electron microscopy shows a spherical morphology of AgNPs with size of 62 nm for both colloidal and film samples, and energy dispersive X‐ray analysis shows peaks confirming AgNPs formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号