首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   296篇
  免费   15篇
化学   201篇
晶体学   8篇
力学   9篇
数学   14篇
物理学   79篇
  2024年   1篇
  2023年   3篇
  2022年   22篇
  2021年   25篇
  2020年   22篇
  2019年   15篇
  2018年   17篇
  2017年   7篇
  2016年   11篇
  2015年   8篇
  2014年   16篇
  2013年   16篇
  2012年   22篇
  2011年   21篇
  2010年   9篇
  2009年   15篇
  2008年   16篇
  2007年   13篇
  2006年   11篇
  2005年   7篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2000年   3篇
  1999年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有311条查询结果,搜索用时 15 毫秒
171.
State of the art chiral chromatography still employs 3–5 μm bonded or immobilized chiral selectors in 10–25 cm columns. With the availability of 1.9 μm narrow particle size distribution (NPSD) silica, it is now possible to make ever shorter, high efficiency columns practical for sub-minute chiral separations. Three macrocyclic glycopeptides (teicoplanin, teicoplanin aglycone, and vancomycin) were bonded onto 1.9 μm NPSD particles. Such packed columns had ∼80% lower backpressure as compared to polydisperse (PD) 1.7 μm silica materials when using the same mobile phase. The decreased backpressure allowed for diminution of frictional heating and allowed for the use of the 1.9 μm NPSD particle based columns at high flow rates. The 1.9 μm NPSD particle based columns showed up to 190,000 plates m−1 for chiral molecules and 210,000 plates m−1 for achiral probes. Representative enantiomeric separations are shown for wide classes of compounds, including different types of amino acids, β-blockers, and pharmaceutically important heterocyclic compounds such as oxazolidinones. Applications in three liquid chromatography modes, namely, reversed phase, polar organic mode and normal phase chiral separations were shown with resolution values ranging from 1.5 to 5.7. Additionally, the same columns were used with supercritical fluid chromatography (SFC) for ultrafast separations.  相似文献   
172.
New semi-inter-penetrating network (SIPN) gels based on methylmethacrylate (MMA) and fluorinated acrylates were synthesized by thermal free radical polymerization. These SIPN gels had two major parts. First part was the linear chain composed of fluorostyrene (FS) and Lithium salt of 2-acrylamido-2-methylpropane sulphonic acid (LiAMPS) which was embedded in the second part, a cross linked network of MMA and fluorinated acrylates. In the first series of gels, LiAMPS was polymerized with FS to form linear chains which were then embedded in a crosslinked network of MMA and 1,1,1,3,3,3-hexafluoroisopropylacrylate (HFIPA). Gel containing equal concentration of MMA and HFIPA showed maximum conductivity with good strength. In another series, 1,1,2,2-tetrafluoroethyl acrylate (TFEA) was used instead of HFIPA in the crosslinked network. The gels based on TFEA demonstrated better conductivity and strength. In this latter series, the gel containing an almost equal amount of MMA and TFEA in the crosslinked network showed maximum conductivity with appreciable strength. The gels prepared by using only FS with no fluorinating acrylates showed good conductivity but no strength. Ionic conductivity-temperature relationship follows Arrhenius type nature. Thermal activation process was evident in all these gel series. Thus, by selecting an appropriate combination of fluorinated acrylates it is possible to prepare gel with high conductivity and appreciable strength for potential applications in lithium ion battery.  相似文献   
173.
Continuous wave electron paramagnetic resonance imaging for in vivo mapping of spin distribution and spectral shape requires rapid data acquisition. A spectral-spatial imaging technique is presented that provides an order of magnitude reduction in acquisition time, compared to iterative tomographic reprojection. The proposed approach assumes that spectral shapes in the sample are well-approximated by members from a parametric family of functions. A model is developed for the spectra measured with magnetic field modulation. Parameters defining the spin distribution and spectral shapes are then determined directly from the measurements using maximum a posteriori probability estimation. The approach does not suffer approximation error from limited sweep width of the main magnetic field and explicitly incorporates the variability in signal-to-noise ratio versus strength of magnetic field gradient. The processing technique is experimentally demonstrated on a one-dimensional phantom containing a nitroxide spin label with constant g-factor. Using an L-band EPR spectrometer, spectral shapes and spin distribution are accurately recovered from two projections and a spectral window which is comparable to the maximum linewidth of the sample.  相似文献   
174.
Glycoconjugates comprise a variety of structures, include glycoproteins and glycolipids and are found on the surfaces of animal and plant cells, as well as on the surface of microorganisms. Determination of the structure and the distribution of glycoconjugates on cell surfaces are important for the understanding their biological function. Lectins are useful to investigate protein-carbohydrate interactions, because they have specificity for defined carbohydrate structure. They have been implicated in cell-to-cell recognition and signaling, blood group typing, in immune recognition process, and various other biological processes, such as viral, bacterial, mycoplasmal and parasitic infections, fertilization, cancer metastasis, growth and differentiation. Once thought to be confined to plant seeds, lectins are now recognized as ubiquitous in virtually all living systems, ranging from viruses and bacteria to animals. Plant lectins provide a rich source of carbohydrate-recognizing protein reagents for glycobiologists and biotechnologists. Biotechnology offers the therapeutic use of lectin against certain life threatening diseases such as human immunodeficiency virus and cancer. This review presents a comprehensive summary of research efforts that focus on the actual and potential uses and advantages of using lectins to target glycoproteins and also glycoproteins to target lectins.  相似文献   
175.
Rizwan  M.  Iqra  I.  Gillani  S. S. A.  Zeba  I.  Shakil  M.  Usman  Z. 《Physics of the Solid State》2021,63(1):134-140
Physics of the Solid State - In this study, the first-principles calculation which is grounded on the density functional theory is employed to conclude the structural, optical, and electronic...  相似文献   
176.
Due to ever-increasing global energy demands and dwindling resources, there is a growing need to develop materials that can fulfil the World's pressing energy requirements. Electrochemical energy storage devices have gained significant interest due to their exceptional storage properties, where the electrode material is a crucial determinant of device performance. Hence, it is essential to develop 3-D hierarchical materials at low cost with precisely controlled porosity and composition to achieve high energy storage capabilities. After presenting the brief updates on porous carbons (PCs), then this review will focus on the nitrogen (N) doped porous carbon materials (NPC) for electrochemical supercapacitors as the NPCs play a vital role in supercapacitor applications in the field of energy storage. Therefore, this review highlights recent advances in NPCs, including developments in the synthesis of NPCs that have created new methods for controlling their morphology, composition, and pore structure, which can significantly enhance their electrochemical performance. The investigated N-doped materials a wide range of specific surface areas, ranging from 181.5 to 3709 m2 g−1, signifies a substantial increase in the available electrochemically active surface area, which is crucial for efficient energy storage. Moreover, these materials display notable specific capacitance values, ranging from 58.7 to 754.4 F g−1, highlighting their remarkable capability to effectively store electrical energy. The outstanding electrochemical performance of these materials is attributed to the synergy between heteroatoms, particularly N, and the carbon framework in N-doped porous carbons. This synergy brings about several beneficial effects including, enhanced pseudo-capacitance, improved electrical conductivity, and increased electrochemically active surface area. As a result, these materials emerge as promising candidates for high-performance supercapacitor electrodes. The challenges and outlook in NPCs for supercapacitor applications are also presented. Overall, this review will provide valuable insights for researchers in electrochemical energy storage and offers a basis for fabricating highly effective and feasible supercapacitor electrodes.  相似文献   
177.
The increased utilization of CuO nanoparticles (CuO NPs) in various fields has raised concerns about their discharge into water containing a wide range of organic ligands. Moreover, the adsorption of these ligands can stabilize the CuO NPs in drinking water treatment plants. Thus, their removal from potable water is important to mitigate the risk to humans. The present study explored the efficacy of the coagulation–sedimentation (C/S) process for the removal of tannic acid (TA)-stabilized CuO NPs using polyaluminum ferric chloride (PAFC) as a coagulant. Moreover, the influence of process conditions (stirring speed) and water chemistry (i.e., pH and ionic strength (IS)) were also investigated to determine their impact on removal. The results showed that stirring speed in the reaction phase significantly affected the removal due to increased flocculation compared with stirring speed in the mixing phase. In addition, pH and IS affect the colloidal stability and removal efficiency of CuO NPs. A relatively better removal performance (<99%) of CuO NPs was found at lower coagulant dosage in the pH range 6–8. The addition of organic ligands reversed the surface charge potential and enhanced the colloidal stability of CuO NPs, resulting in the destabilization of TA-CuO NPs, thereby reducing the optimum PAFC dosage for removal. By contrast, the IS above the critical coagulation concentration decreased the removal efficiency due to inhibition of the ionic activity of PAFC hydrolysate in the aqueous environment. Fourier transform infrared findings of TA-CuO NPs composite flocs suggest that the primary removal mechanism might be mediated via the combined effect of neutralization, complexation as well as adsorption.  相似文献   
178.
Effect of 1.25 MeV gamma radiation on the structural and optical properties of virgin and gamma irradiated (0-2000 kGy) Polyethyleneterephthalate (PET) polymer samples are analyzed using powder X-ray diffractometer and UV-vis spectrophotometer. Diffraction pattern of PET polymer indicates the semi-crystalline in nature whereas the crystallinity increases with increasing dose of irradiation. The remarkable variation in crystallite size is also observed. The absorption and activation energy increase and the optical band gap (Eg) decreases with increasing dose in UV-vis studies. The existence of the maximum absorption, their shifting and broadening due to gamma irradiation in PET polymer are also discussed.  相似文献   
179.
Phenytoin is a powerful antiseizure drug with complex pharmacokinetic properties, making it an interesting model drug to use in preclinical in vivo investigations, especially with regards to formulations aiming to improve drug delivery to the brain. Moreover, it has a major metabolite, 5-(4-hydroxyphenyl)-5-phenylhydantoin, which can be simultaneously studied to achieve a better assessment of its behaviour in the body. Here, we describe the development and validation of a sensitive LCMS/MS method for quantification of phenytoin and 5-(4-hydroxyphenyl)-5-phenylhydantoin in rat plasma and brain which can be used in such preclinical studies. Calibration curves produced covered a range of 7.81 to 250 ng/mL (plasma) and 23.4 to 750 ng/g (brain tissue) for both analytes. The method was validated for specificity, sensitivity, accuracy, and precision and found to be within the acceptable limits of ±15% over this range in both tissue types. The method when applied in two in vivo investigations: validation of a seizure model and to study the behaviour of a solution of intranasally administered phenytoin as a foundation for future studies into direct nose-to-brain delivery of phenytoin using specifically developed particulate systems, was highly sensitive for detecting phenytoin and 5-(4-hydroxyphenyl)-5-phenylhydantoin in rat plasma and brain.  相似文献   
180.
Breast cancer is a complex and multi-drug resistant (MDR) disease, which could result in the failure of many chemotherapeutic clinical agents. Discovering effective molecules from natural products or by derivatization from known compounds is the interest of many research studies. The first objective of the present study is to investigate the cytotoxic combinatorial, chemosensitizing, and apoptotic effects of an isatin derived compound (5,5-diphenylimidazolidine-2,4-dione conjugated with 5-substituted isatin, named HAA2021 in the present study) against breast cancer cells (MCF7) and breast cancer cells resistant to doxorubicin (MCF7/ADR) when combined with doxorubicin. The second objective is to investigate the binding mode of HAA2021 withP-glycoprotein (P-gp) and heat shock protein 90 (Hsp90), and to determine whether their co-inhibition by HAA2021 contribute to the increase of the chemosensitization of MCF7/ADR cells to doxorubicin. The combination of HAA2021, at non-toxic doses, with doxorubicin synergistically inhibited the proliferation while inducing significant apoptosis in MCF7 cells. Moreover, HAA2021 increased the chemosensitization of MCF7/ADR cells to doxorubicin, resulting in increased cytotoxicity/selectivity and apoptosis-inducing efficiency compared with the effect of doxorubicin or HAA2021 alone against MCF7/ADR cells. Molecular modeling showed that two molecules of HAA2021 bind to P-gp at the same time, causing P-gp inhibitory effect of the MDR efflux pump, and accumulation of Rhodamine-123 (Rho123) in MCF7/ADR cells. Furthermore, HAA2021 stably interacted with Hsp90α more efficiently compared with 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), which was confirmed with the surface plasmon resonance (SPR) and molecular modeling studies. Additionally, HAA2021 showed multi-target effects via the inhibition of Hsp90 and nuclear factor kappa B (NF-𝜅B) proteins in MCF7 and MCF7/ADR cells. Results of real time-PCR also confirmed the synergistic co-inhibition of P-gp/Hsp90α genes in MCF7/ADR cells. Further pharmacokinetic and in vivo studies are warranted for HAA2021 to confirm its anticancer capabilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号