首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   447篇
  免费   35篇
  国内免费   1篇
化学   474篇
物理学   9篇
  2022年   3篇
  2021年   1篇
  2020年   12篇
  2019年   3篇
  2018年   1篇
  2017年   6篇
  2016年   19篇
  2015年   13篇
  2014年   16篇
  2013年   18篇
  2012年   50篇
  2011年   60篇
  2010年   19篇
  2009年   9篇
  2008年   48篇
  2007年   25篇
  2006年   31篇
  2005年   26篇
  2004年   25篇
  2003年   30篇
  2002年   20篇
  2001年   20篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有483条查询结果,搜索用时 31 毫秒
451.
A coordinatively saturated ruthenium(II) complex having tetradentate tris(2-pyridylmethyl)amine (TPA) and bidentate 2,2'-bipyridine (bpy), [Ru(TPA)(bpy)](2+) (1), was oxidized by a Ce(IV) ion in H(2)O to afford a Ru(IV)-oxo complex, [Ru(O)(H(+)TPA)(bpy)](3+) (2). The crystal structure of the Ru(IV)-oxo complex 2 was determined by X-ray crystallography. In 2, the TPA ligand partially dissociates to be in a facial tridentate fashion and the uncoordinated pyridine moiety is protonated. The spin state of 2, which showed paramagnetically shifted NMR signals in the range of 60 to -20 ppm, was determined to be an intermediate spin (S = 1) by the Evans' method with (1)H NMR spectroscopy in acetone-d(6). The reaction of 2 with various oraganic substrates in acetonitrile at room temperature afforded oxidized and oxygenated products and a solvent-bound complex, [Ru(H(+)TPA)(bpy)(CH(3)CN)], which is intact in the presence of alcohols. The oxygenation reaction of saturated C-H bonds with 2 proceeds by two-step processes: the hydrogen abstraction with 2, followed by the dissociation of the alcohol products from the oxygen-rebound complexes, Ru(III)-alkoxo complexes, which were successfully detected by ESI-MS spectrometry. The kinetic isotope effects in the first step for the reaction of dihydroanthrathene (DHA) and cumene with 2 were determined to be 49 and 12, respectively. The second-order rate constants of C-H oxygenation in the first step exhibited a linear correlation with bond dissociation energies of the C-H bond cleavage.  相似文献   
452.
453.
A self-assembled supramolecular triad as a model to mimic the light-induced events of the photosynthetic antenna-reaction center, that is, ultrafast excitation transfer followed by electron transfer ultimately generating a long-lived charge-separated state, has been accomplished. Boron dipyrrin (BDP), zinc porphyrin (ZnP) and fullerene (C(60)), respectively, constitute the energy donor, electron donor and electron acceptor segments of the antenna-reaction center imitation. Unlike in the previous models, the BDP entity was placed between the electron donor, ZnP and electron acceptor, C(60) entities. For the construction, benzo-18-crown-6 functionalized BDP was synthesized and subsequently reacted with 3,4-dihydroxyphenyl functionalized ZnP through the central boron atom to form the crown-BDP-ZnP dyad. Next, an alkyl ammonium functionalized fullerene was used to self-assemble the crown ether entity of the dyad via ion-dipole interactions. The newly formed supramolecular triad was fully characterized by spectroscopic, computational and electrochemical methods. Steady-state fluorescence and excitation studies revealed the occurrence of energy transfer upon selective excitation of the BDP in the dyad. Further studies involving the pump-probe technique revealed excitation transfer from the (1)BDP* to ZnP to occur in about 7 ps, much faster than that reported for other systems in this series of triads, as a consequence of shorter distance between the entities. Upon forming the supramolecular triad by self-assembling fullerene, the (1)ZnP(*) produced by direct excitation or by energy transfer mechanism resulted in an initial electron transfer to the BDP entity. The charge recombination resulted in the population of the triplet excited state of C(60), from where additional electron transfer occurred to produce C(60)(?-):crown-BDP-ZnP(?+) ion pair as the final charge-separated species. Nanosecond transient absorption studies revealed the lifetime of the charge-separated state to be ~100 μs, the longest ever reported for this type of antenna-reaction center mimics, indicating better charge stabilization as a result of the different disposition of the entities of the supramolecular triad.  相似文献   
454.
Multiple charge-separation sites have successfully been constructed using supramolecular complexes of multiporphyrinic oligopeptides [P(ZnP)(n), n = 2, 4, 8] with fulleropyrrolidine bearing a pyridine or imidazole coordinating ligand, which are organized by utilizing π-π interaction in addition to the coordination bond.  相似文献   
455.
Superoxide ion (O2˙-) forms a stable 1 : 1 complex with scandium hexamethylphosphoric triamide complex [Sc(HMPA)(3)(3+)], which can be detected in solution by ESR spectroscopy. Electron transfer from O2˙- -Sc(HMPA)(3)(3+) complex to a series of p-benzoquinone derivatives occurs, accompanied by binding of Sc(HMPA)(3)(3+) to the corresponding semiquinone radical anion complex to produce the semiquinone radical anion-Sc(HMPA)(3)(3+) complexes. The 1 : 1 and 1 : 2 complexes between semiquinone radical anions and Sc(HMPA)(3)(3+) depending on the type of semiquinone radical anions were detected by ESR measurements. This is defined as Sc(HMPA)(3)(3+)-coupled electron transfer. There are two reaction pathways in the Sc(HMPA)(3)(3+)-coupled electron transfer. One is a stepwise pathway in which the binding of Sc(HMPA)(3)(3+) to semiquinone radical anions occurs after the electron transfer, when the rate of electron transfer remains constant with the change in concentration of Sc(HMPA)(3)(3+). The other is a concerted pathway in which electron transfer and the binding of Sc(HMPA)(3)(3+) occurs in a concerted manner, when the rates of electron transfer exhibit first-order and second-order dependence on the concentration of Sc(HMPA)(3)(3+) depending the number of Sc(HMPA)(3)(3+) (one and two) bound to semiquinone radical anions. The contribution of two pathways changes depending on the substituents on p-benzoquinone derivatives. The present study provides the first example to clarify the kinetics and mechanism of metal ion-coupled electron-transfer reactions of the superoxide ion.  相似文献   
456.
Retinol neutral radicals (RS-retinol˙), generated from the reaction of retinol with 4-pyridylthiyl and 2-pyridylthiyl radicals in argon-saturated methanol, undergo β-elimination, which can be monitored via the slow secondary absorption rise at 380 nm attributed to the rearrangement of the unstable retinol neutral addition radicals to the more stable addition radicals. Rate constants for the β-elimination reactions (k(β)) of 4-PyrS-retinol˙ were measured at different temperatures and the Arrhenius equation for the reaction is described by log (k(β)/s(-1)) = (12.7 ± 0.2) - (54.3 ± 1.3)/θ, where θ = 2.3RT kJ mol(-1). The reactivities of retinol addition radicals (RS-retinol˙), generated from the reaction of retinol with various thiyl radicals, towards oxygen have also been investigated in methanol. In the presence of oxygen, the decay of RS-retinol˙ fits to biexponential kinetics and both observed rate constants for the RS-retinol˙ decay are oxygen-concentration dependent. This suggests that at least two thiyl addition radicals, formed from the reaction of RS˙ with retinol, undergo oxygen addition reactions. In light of the estimated rate constants for oxygen addition to RS-retinol˙ and RS-CAR˙ (CAR: carotenoid), the antioxidant-prooxidant properties of retinol are discussed.  相似文献   
457.
The crystal structure of an N(2)-encapusulated MOF, which is stable under open-air conditions at ambient temperature, was determined by single-crystal X-ray diffraction at 123 K. The crystal MOF of [HSm{V(IV)O(TPPS)}](n) designed to have 1-D channels periodically constricted by porphyrins planes adsorbed N(2) at 77 K. The adsorbed N(2) molecules remained in the 1-D channels even after warming to ambient temperature. The single-crystal structure of [HSm{V(IV)O(TPPS)}](n)?N(2) determined by X-ray diffraction indicated that N(2) molecules trapped in the constricted parts block other N(2) molecules in 1-D channels from escaping from the MOF. Such a unique encapsulation mode provides a promising approach toward designing novel MOFs with high gas storage capacity at ambient temperature.  相似文献   
458.
Br?nsted base-assisted boronic acid catalysis for the dehydrative self-condensation of carboxylic acids is described. Arylboronic acid bearing bulky (N,N-dialkylamino)methyl groups at the 2,6-positions can catalyze the intramolecular dehydrative condensation of di- and tetracarboxylic acids. This is the first successful method for the catalytic dehydrative self-condensation of carboxylic acids.  相似文献   
459.
460.
A series of molecular triads, composed of closely positioned boron dipyrrin-fullerene units, covalently linked to either an electron donor (donor(1)-acceptor(1)-acceptor(2)-type triads) or an energy donor (antenna-donor(1)-acceptor(1)-type triads) was synthesized and photoinduced energy/electron transfer leading to stabilization of the charge-separated state was demonstrated by using femtosecond and nanosecond transient spectroscopic techniques. The structures of the newly synthesized triads were visualized by DFT calculations, whereas the energies of the excited states were determined from spectral and electrochemical studies. In the case of the antenna-donor(1)-acceptor(1)-type triads, excitation of the antenna moiety results in efficient energy transfer to the boron dipyrrin entity. The singlet-excited boron dipyrrin thus generated, undergoes subsequent energy and electron transfer to fullerene to produce a boron dipyrrin radical cation and a fullerene radical anion as charge-separated species. Stabilization of the charge-separated state in these molecular triads was observed to some extent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号