首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   524篇
  免费   15篇
化学   416篇
晶体学   13篇
力学   5篇
数学   22篇
物理学   83篇
  2023年   3篇
  2022年   3篇
  2021年   7篇
  2020年   8篇
  2019年   11篇
  2018年   3篇
  2017年   6篇
  2016年   8篇
  2015年   10篇
  2014年   8篇
  2013年   31篇
  2012年   18篇
  2011年   37篇
  2010年   19篇
  2009年   16篇
  2008年   38篇
  2007年   36篇
  2006年   35篇
  2005年   33篇
  2004年   22篇
  2003年   23篇
  2002年   16篇
  2001年   15篇
  2000年   9篇
  1999年   2篇
  1998年   4篇
  1997年   7篇
  1996年   7篇
  1994年   3篇
  1993年   6篇
  1992年   8篇
  1991年   3篇
  1990年   5篇
  1989年   5篇
  1988年   5篇
  1987年   6篇
  1986年   3篇
  1985年   6篇
  1984年   6篇
  1983年   6篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   7篇
  1978年   8篇
  1977年   3篇
  1976年   8篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
排序方式: 共有539条查询结果,搜索用时 15 毫秒
111.
Lithium formate ((6)LiOOCH.H(2)O), 95% (6)Li enrichment, combined with an exchange of crystallization water with D(2)O was investigated. The ESR spectrum of the radiation induced free radicals stable at room temperature consists of a singlet with a narrow line width, 0.92mT. (6)Li has smaller magnetic moment and nuclear spin, which resulted in the narrower line width accompanied with an increase in peak amplitude. In comparison with lithium formate with natural isotopic composition, (6)Li (7.5%, I=1) and (7)Li (92.5%, I=3/2), the sensitivity was increased by a factor of two. With optimised spectrometer settings (6)Li formate had seven times higher sensitivity compared to alanine. Therefore this material is proposed as a dosimeter material in a dose range down to 0.1Gy. The g and the (13)C-hyperfine (hf) tensors of the CO(2)(-) radical anion, major paramagnetic products, were evaluated to be g=(2.0037, 1.9975, 2.0017), and A((13)C)=(465.5, 447.5, 581.3) MHz for polycrystalline samples at room temperature. Furthermore, the (1)H-hf and (6)Li-hf tensors observed for the surroundings of CO(2)(-) by ENDOR technique were in fairly good agreement with DFT calculations. The CO(2)(-) radicals are found to be so stable that the formate is applicable to the ESR dosimetry, because of fully relaxing in a fully relaxed geometrical structure of the CO(2)(-) component and remaining tight binding with the surroundings after the H atom detachment from HCO(2)(-).  相似文献   
112.
113.
The concentration vs composition diagram of aggregate formation of the dodecyltrimethylammonium bromide (DTAB) and didodecyldimethylammonium bromide (DDAB) mixture in aqueous solution at rather dilute region was constructed by analyzing the surface tension, turbidity, and electrical conductivity data and inspected by cryo-TEM images and dynamic light scattering data. Although the aqueous solution of DTAB forms only micelles, the transition from monomer to small aggregates and then to vesicle was found at 0.1 < X2 相似文献   
114.
We report a combined experimental and computational study of the proline effect in model dipeptides Pro-Gly and Gly-Pro. Gas-phase protonated peptide ions were discharged by glancing collisions with potassium or cesium atoms at 3 keV collision energies, and the peptide radical intermediates and their dissociation products were analyzed following collisional ionization to anions. The charge reversal (+CR-) mass spectra of (Pro-Gly + H)+(1a+) and (Gly-Pro + H)+ (2a+) showed dramatic differences and thus provided a sensitive probe of ion structure. Whereas 1a+ completely dissociated upon charge inversion, 2a+ gave a nondissociated anion as the most abundant product. Ab initio and density functional theory calculations provided structures and vertical recombination energies (REvert) for 1a+ and 2a+. The recombination energies, REvert = 3.07 and 3.36 eV for 1a+ and 2a+, respectively, were lower than the alkali metal ionization energies and indicated that the collisional electron transfer to the peptide ions was endoergic. Radical 1a* was found to exist in a very shallow local energy minimum, with transition state energies for loss and migration of H indicating very facile dissociation. In contrast, radical 2a* was calculated to spontaneously isomerize upon electron capture to a stable dihydroxycarbinyl isomer (2e*) that can undergo consecutive and competitive isomerizations by proline ring opening and intramolecular hydrogen atom transfers to yield stable radical isomers. Radical 2e* and its stable isomers were calculated to have substantial electron affinities and thus can form the stable anions that were observed in the +CR- mass spectra. The calculated TS energies and RRKM kinetic analysis indicated that peptide N-C alpha bond dissociations compete with pyrrolidine ring openings triggered by radical sites at both the N-terminal and C-terminal sides of the proline residue. Open-ring intermediates were found in which loss of an H atom was energetically preferred over backbone dissociations. This provided an explanation for the proline effect causing low incidence of electron capture dissociations of N-C alpha bonds adjacent to proline residues in tryptic peptides and also for some peculiar behavior of proline-containing protein cation-radicals.  相似文献   
115.
The surface tension of the aqueous solutions of binary cationic surfactant mixtures of (1) dodecylammnonium chloride (DAC)-tetradecyltrimethylammonium chloride (TTAC), (2) decylammonium chloride (DeAC)-dodecyltrimethylammonium chloride (DTAC), and (3) DAC-DTAC was measured as a function of the total molality and composition of surfactants at 298.15 K. The compositions of surfactants in the adsorbed film and micelle were evaluated and the phase diagram of adsorption and that of micelle formation were constructed. Furthermore the excess Gibbs energies of adsorption and micelle formation were calculated to estimate the deviation from the corresponding ideal mixing. It was found that the surface and micelle are enriched in trimethylammonium salts in (1) and (2), while in ammonium salt in (3) compared to the bulk solution. On the other hand, the micelle is enriched in trimethylammonium salts compared to the surface at the critical micelle concentration (CMC) in all the systems. The miscibility of the surfactants was clarified from the standpoints of the structure of the head group and of the matching between the size of polar head group of surfactants and the difference in hydrocarbon chain length.  相似文献   
116.
We applied the ONIOM-molecular dynamics (MD) method to the hydrolytic deamination of cytidine by cytidine deaminase, which is an essential step of the activation process of the anticancer drug inside the human body. The direct MD simulations were performed for the realistic model of cytidine deaminase by calculating the energy and its gradient by the ab initio ONIOM method on the fly. The ONIOM-MD calculations including the thermal motion show that the neighboring amino acid residue is an important factor of the environmental effects and significantly affects not only the geometry and energy of the substrate trapped in the pocket of the active site but also the elementary step of the catalytic reaction. We successfully simulate the second half of the catalytic cycle, which has been considered to involve the rate-determining step, and reveal that the rate-determining step is the release of the NH3 molecule.  相似文献   
117.
We attempted to establish a high‐speed and high‐resolution profiling method for a carotenoid mixture as a highly selective and highly sensitive detection method; the analysis was carried out by supercritical fluid chromatography (SFC) coupled with mass spectrometry (MS). When an octadecyl‐bonded silica (ODS) particle‐packed column was used for separation, seven carotenoids including structural isomers were successfully separated within 15 min. This result indicated not only improved separation but also improved throughput compared to the separation and throughput in RP‐HPLC. The use of a monolithic ODS column resulted in additional improvement in both the resolution and the throughput; the analysis time was reduced to 4 min by increasing the flow rate. Furthermore, carotenoids in biological samples containing the complex matrices were separated effectively by using several monolithic columns whose back pressure was very low. The mass spectrometer allowed us to perform a more sensitive analysis than UV detection; the detection limit of each carotenoid was 50 pg or below. This is the first report of carotenoid analysis carried out by SFC‐MS. The profiling method developed in this study will be a powerful tool for carrying out accurate profiling of biological samples.  相似文献   
118.
It has been reported that the structural stability is significantly deteriorated under radio-frequency-ultrasonic perturbation at relatively low temperatures, e.g., near/below the glass transition temperature T(g), even for thermally stable metallic glasses. Here, we consider an underlying mechanism of the ultrasound-induced instability, i.e., crystallization, of a glass structure to grasp the nature of the glass-to-liquid transition of metallic glasses. Mechanical spectroscopy analysis indicates that the instability is caused by atomic motions resonant with the dynamic ultrasonic-strain field, i.e., atomic jumps associated with the beta relaxation that is usually observed for low frequencies of the order of 1 Hz at temperatures far below T(g). Such atomic motions at temperatures lower than the so-called kinetic freezing temperature T(g) originate from relatively weakly bonded (and/or low-density) regions in a nanoscale inhomogeneous microstructure of glass, which can be straightforwardly inferred from a partially crystallized microstructure obtained by annealing of a Pd-based metallic glass just below T(g) under ultrasonic perturbation. According to this nanoscale inhomogeneity concept, we can reasonably understand an intriguing characteristic feature of less-stable metallic glasses (fabricated only by rapid melt quenching) that the crystallization precedes the glass transition upon standard heating but the glass transition is observable at extremely high rates. Namely, in such less-stable metallic glasses, atomic motions are considerably active at some local regions even below the kinetic freezing temperature. Thus, the glass-to-crystal transition of less-stable metallic glasses is, in part, explained with the present nanoscale inhomogeneity concept.  相似文献   
119.
The total-reflection X-ray absorption fine structure (XAFS) method previously employed for the adsorption of dodecyltrimethylammonium bromide (DTAB) at the air/water interface was applied to that in the presence of NaBr. The surface concentration of the bromide ions Gamma(X)(B) of DTAB and NaBr was evaluated by using the Br K-edge absorption jump values of the total-reflection XAFS spectra and was compared to the corresponding value Gamma(H)(B) estimated from the dependence of surface tension on the bulk concentrations of DTAB m(1) and NaBr m(2). The Gamma(X)(B) values trace almost perfectly the Gamma(X)(B) versus m(1) curve up to a concentration near the critical micelle concentration (cmc) and deviate gradually above the concentration. This behavior is basically similar to that of the single DTAB system and ensures that the XAFS method is also applicable to the DTAB system, even in the presence of NaBr. In addition, this method was extended to the single nonionic amphiphile with covalently bonded bromine, and the surface concentrations of 6-bromo-1-hexanol (BrC6OH), Gamma(X)(1) and Gamma(H)(B), were evaluated and compared with each other. It was found that the Gamma(X)(1) value almost perfectly traces the Gamma(H)(1) versus m(1) curve, even at high surface concentrations. The excellent coincidence confirmed that the total-reflection XAFS method can be applied to the nonionic amphiphile system as well as a cationic surfactant with or without an added salt system. Finally, the difference between the Gamma(X)(B) and Gamma(H)(B) values observed in the DTAB with and without an added salt system is briefly described.  相似文献   
120.
The aim of this article was to determine the optimal ingredients for the rapidly disintegrating oral tablets prepared by the crystalline transition method (CT method). The effect of ingredients (diluent, active drug substance and amorphous sugar) on the characteristics of the tablets was investigated. The ingredients were compressed and the resultant tablets were stored under various conditions. The oral disintegration time of the tablet significantly depended on diluents, due to differences in the penetration of a small amount of water in the mouth and the viscous area formed inside the tablet. The oral disintegration time was 10-30 s for tablets with a tensile strength of approximately 1 MPa, when erythritol, mannitol or xylitol was used as the diluent. The increase in the tensile strength of tablets containing highly water-soluble active drug substances during storage was as large as that of tablets without active drug substances, while the increase in the tensile strength of tablets containing low water-soluble active drug substances was small. It was therefore found that highly water-soluble active drug substances were more suitable for the formulation prepared by the CT method than low water-soluble active drug substances. Irrespective of the type of amorphous sugar (amorphous sucrose, lactose or maltose) used, the porosity of tablets with 1 MPa of tensile strength was 30-40%, and their oral disintegration time was 10-20 s. The optimal ingredients for rapidly disintegrating oral tablets with reasonable tensile strength and disintegration time were therefore determined from these results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号