首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4338篇
  免费   220篇
  国内免费   22篇
化学   3256篇
晶体学   17篇
力学   84篇
数学   571篇
物理学   652篇
  2023年   52篇
  2022年   73篇
  2021年   86篇
  2020年   137篇
  2019年   109篇
  2018年   63篇
  2017年   79篇
  2016年   174篇
  2015年   150篇
  2014年   180篇
  2013年   202篇
  2012年   308篇
  2011年   261篇
  2010年   152篇
  2009年   146篇
  2008年   229篇
  2007年   221篇
  2006年   194篇
  2005年   200篇
  2004年   188篇
  2003年   124篇
  2002年   160篇
  2001年   73篇
  2000年   69篇
  1999年   53篇
  1998年   59篇
  1997年   55篇
  1996年   60篇
  1995年   41篇
  1994年   36篇
  1993年   34篇
  1992年   45篇
  1991年   33篇
  1990年   30篇
  1989年   34篇
  1988年   33篇
  1987年   31篇
  1986年   27篇
  1985年   33篇
  1984年   32篇
  1983年   28篇
  1982年   21篇
  1981年   39篇
  1980年   25篇
  1979年   24篇
  1978年   22篇
  1977年   28篇
  1976年   14篇
  1975年   16篇
  1970年   13篇
排序方式: 共有4580条查询结果,搜索用时 23 毫秒
51.
We discuss radiative corrections to an atomic two-level system subject to an intense driving laser field. It is shown that the Lamb shift of the laser-dressed states, which are the natural state basis of the combined atom-laser system, cannot be explained in terms of the Lamb shift received by the atomic bare states which is usually observed in spectroscopic experiments. In the final part, we propose an experimental scheme to measure these corrections based on the incoherent resonance fluorescence spectrum of the driven atom.  相似文献   
52.
The dynamics of excitons in individual semiconducting single-walled carbon nanotubes was studied using time-resolved photoluminescence (PL) spectroscopy. The PL decay from tubes of the same (n,m) type was found to be monoexponential, however, with lifetimes varying between less than 20 and 200 ps from tube to tube. Competition of nonradiative decay of excitons is facilitated by a thermally activated process, most likely a transition to a low-lying optically inactive trap state that is promoted by a low-frequency phonon mode.  相似文献   
53.
Simultaneous electroencephalography (EEG)/functional magnetic resonance imaging (fMRI) acquisition can identify the brain networks involved in generating specific EEG patterns. Yet, the combination of these methodologies is hampered by strong artifacts that arise due to electromagnetic interference during magnetic resonance (MR) image acquisition. Here, we report corrections of the gradient-induced artifact in phantom measurements and in experiments with an awake behaving macaque monkey during fMRI acquisition at a magnetic field strength of 4.7 T. Ninety-one percent of the amplitude of a 10 microV, 10 Hz phantom signal could successfully be recovered without phase distortions. Using this method, we were able to extract the monkey EEG from scalp recordings obtained during MR image acquisition. Visual evoked potentials could also be reliably identified. In conclusion, simultaneous EEG/fMRI acquisition is feasible in the macaque monkey preparation at 4.7 T and holds promise for investigating the neural processes that give rise to particular EEG patterns.  相似文献   
54.
Graphene nanostructures are promising candidates for future nanoelectronics and solid-state quantum information technology. In this review we provide an overview of a number of electron transport experiments on etched graphene nanostructures. We briefly revisit the electronic properties and the transport characteristics of bulk, i.e., two-dimensional graphene. The fabrication techniques for making graphene nanostructures such as nanoribbons, single electron transistors and quantum dots, mainly based on a dry etching ??paper-cutting?? technique are discussed in detail. The limitations of the current fabrication technology are discussed when we outline the quantum transport properties of the nanostructured devices. In particular we focus here on transport through graphene nanoribbons and constrictions, single electron transistors as well as on graphene quantum dots including double quantum dots. These quasi-one-dimensional (nanoribbons) and quasi-zero-dimensional (quantum dots) graphene nanostructures show a clear route of how to overcome the gapless nature of graphene allowing the confinement of individual carriers and their control by lateral graphene gates and charge detectors. In particular, we emphasize that graphene quantum dots and double quantum dots are very promising systems for spin-based solid state quantum computation, since they are believed to have exceptionally long spin coherence times due to weak spin-orbit coupling and weak hyperfine interaction in graphene.  相似文献   
55.
The intensive use of nano-sized titanium dioxide (TiO2) particles in many different applications necessitates studies on their risk assessment as there are still open questions on their safe handling and utilization. For reliable risk assessment, the interaction of TiO2 nanoparticles (NP) with biological systems ideally needs to be investigated using physico-chemically uniform and well-characterized NP. In this article, we describe the reproducible production of TiO2 NP aerosols using spark ignition technology. Because currently no data are available on inhaled NP in the 10?C50 nm diameter range, the emphasis was to generate NP as small as 20 nm for inhalation studies in rodents. For anticipated in vivo dosimetry analyses, TiO2 NP were radiolabeled with 48V by proton irradiation of the titanium electrodes of the spark generator. The dissolution rate of the 48V label was about 1% within the first day. The highly concentrated, polydisperse TiO2 NP aerosol (3?C6 × 106 cm?3) proved to be constant over several hours in terms of its count median mobility diameter, its geometric standard deviation, and number concentration. Extensive characterization of NP chemical composition, physical structure, morphology, and specific surface area was performed. The originally generated amorphous TiO2 NP were converted into crystalline anatase TiO2 NP by thermal annealing at 950 °C. Both crystalline and amorphous 20-nm TiO2 NP were chain agglomerated/aggregated, consisting of primary particles in the range of 5 nm. Disintegration of the deposited TiO2 NP in lung tissue was not detectable within 24 h.  相似文献   
56.
The charge-density-wave phase of TiSe(2) was studied by angle-resolved photoelectron spectroscopy and resistivity measurements investigating the influence of the band gap size and of a varying population of the conduction band. A gradual suppression of the charge-density-wave-induced electronic superstructure is observed for a variation of the band gap in the ternary compounds TiC(x)Se(2-x) with C=(S,Te) as well as for an occupation of only the conduction band by H(2)O adsorption-induced band bending. These observations point to an optimum band gap and support an excitonic driving force for the charge-density wave.  相似文献   
57.
Dense monoenergetic proton beams from chirped laser-plasma interaction   总被引:1,自引:0,他引:1  
Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (10(7) particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10(21) W/cm(2).  相似文献   
58.

Background  

Transcranial direct current stimulation (tDCS) is a technique that can systematically modify behaviour by inducing changes in the underlying brain function. In order to better understand the neuromodulatory effect of tDCS, the present study examined the impact of tDCS on performance in a working memory (WM) task and its underlying neural activity. In two experimental sessions, participants performed a letter two-back WM task after sham and either anodal or cathodal tDCS over the left dorsolateral prefrontal cortex (DLPFC).  相似文献   
59.

Background  

Interruption of mature axons activates a cascade of events in neuronal cell bodies which leads to various outcomes from functional regeneration in the PNS to the failure of any significant regeneration in the CNS. One factor which seems to play an important role in the molecular programs after axotomy is the stearoyl Coenzyme A-desaturase-1 (SCD-1). This enzyme is needed for the conversion of stearate into oleate. Beside its role in membrane synthesis, oleate could act as a neurotrophic factor, involved in signal transduction pathways via activation of protein kinases C.  相似文献   
60.
We report observation of the interaction between two coherent dissipative spatial solitons in a periodically patterned semiconductor optical amplifier with power levels of tens of milliwatts. The interactions are nonlocal and phase dependent and exhibit surprising features, such as soliton birth. The experimental results are in good agreement with the numerical simulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号