首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219569篇
  免费   2044篇
  国内免费   710篇
化学   113005篇
晶体学   3422篇
力学   9613篇
综合类   5篇
数学   25329篇
物理学   70949篇
  2021年   1779篇
  2020年   1951篇
  2019年   2156篇
  2018年   2825篇
  2017年   2718篇
  2016年   4026篇
  2015年   2586篇
  2014年   3886篇
  2013年   9757篇
  2012年   7916篇
  2011年   9572篇
  2010年   6468篇
  2009年   6296篇
  2008年   8685篇
  2007年   8871篇
  2006年   8540篇
  2005年   7721篇
  2004年   7178篇
  2003年   6290篇
  2002年   6053篇
  2001年   6608篇
  2000年   5117篇
  1999年   3958篇
  1998年   3186篇
  1997年   3241篇
  1996年   3038篇
  1995年   2777篇
  1994年   2628篇
  1993年   2490篇
  1992年   2845篇
  1991年   2811篇
  1990年   2746篇
  1989年   2520篇
  1988年   2583篇
  1987年   2582篇
  1986年   2398篇
  1985年   3199篇
  1984年   3433篇
  1983年   2807篇
  1982年   3042篇
  1981年   2958篇
  1980年   2873篇
  1979年   2944篇
  1978年   3035篇
  1977年   3046篇
  1976年   3079篇
  1975年   2827篇
  1974年   2794篇
  1973年   2930篇
  1972年   1836篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
31.
The chemical composition of glycosaminoglycan (GAG) hydrogels was found to have a profound effect on the physical properties of gels. Hyaluronan (HA) and chondroitin sulfate (CS) were each modified with adipic dihydrazide (ADH) with carbodiimide chemistry. The resulting polymer was crosslinked with various concentrations of poly(ethylene glycol) dialdehyde (PEG‐diald) to produce a series of hydrogels. The physical properties of these GAG hydrogels varied in a concentration‐dependent fashion. Maximal crosslinking was observed at a theoretical crosslinking of 50% for the HA‐ADH‐PEG‐diald hydrogels and 75% for the CS‐ADH‐PEG‐diald hydrogels. Adding PEG‐diald beyond the optimum for crosslinking prolonged the in vitro enzymatic degradation time of the hydrogels. The swelling of the crosslinked GAG hydrogels was correlated with the amount of PEG‐diald used rather than with the crosslinking density. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4344–4356, 2004  相似文献   
32.
For as‐extruded amorphous and biaxially orientated polyester films based on poly(ethylene terephthalate), poly(ethylene naphthalate), and copolymers containing poly(ethylene terephthalate) and poly(ethylene naphthalate) moieties, permeability, diffusion, and solubility coefficients are interpreted in terms of chain mobility. The influence of polymer morphology is determined by comparison of the data for as‐extruded amorphous sheets and materials produced with different biaxial draw ratios. The crystallinities of the samples were assessed using differential scanning calorimetry and density measurements. Changes in mobility at a molecular level were investigated using dielectric spectroscopy and dynamic mechanical thermal analysis. The study, in conjunction with our earlier work, leads to the conclusion that the key to understanding differences in gas transport is the difference in local chain motions rather than in free volume. This was illustrated by the permeability results for He, Ar, N2, and O2 in the range of polyesters. However, the permeability of CO2 was found to require alternative explanations because of polymer–penetrant interactions. For biaxially oriented samples, the differences in diffusivity are not only due to differences in local chain motions, but also additional constraints resulting from the increased crystallinity and chain rigidity—which also act to hinder segmental mobility. The effectiveness of the reduction in permeability in the biaxially oriented films is consequently determined by the ability of the polymer chains to effectively align and form crystalline structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2916–2929, 2004  相似文献   
33.
The effects of the copolymer microstructure on the morphology evolution in polyethylene/poly(ethylene‐co‐α‐olefin) blends were investigated. Microscopy revealed that the melt‐phase morphology, inferred from the solid‐state morphologies of annealed and quenched samples, was strongly affected by the copolymer structure, that is, the branch content and branch length. Higher molecular weight α‐olefin comonomer residues and residue contents in the copolymers led to faster coarsening of the morphology. The molecular weight of the polyethylene and the copolymers affected the coarsening rates of the morphology, principally through its influence on the melt viscosity. The effects of the molecular weight were largely explained by the normalization of the coarsening rate data with respect to the thermal energy and zero‐shear‐rate viscosity. Thus, the effect of the molecular weight on the compatibility of the blends was much smaller than the effects of the branch length and branch number. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 965–973, 2004  相似文献   
34.
Poly(ethylene isophthalate) (PEI) was synthesized for this research with essentially a condensation polymerization of isophthalic acid and ethylene glycol catalyzed by zinc acetate and antimony trioxide. Several samples were obtained, and their characteristics were observed and compared with poly(ethylene terephthalate) (PET). The synthesized PEI samples were chemically identified by 1H NMR. Thermal analysis with differential scanning calorimetry (DSC) yielded results that indicate the samples were primarily amorphous, with a glass‐transition temperature of 55–60 °C. Molecular weights of these PEI samples were also obtained through intrinsic viscosity measurements (Mark–Houwink equation). Molecular weights varied with conditions of the polymerization, and the highest molecular weight achieved was 21,000 g/mol. Finally, the diffusion coefficient, solubility, and permeability of CO2 gas in PEI were measured and found to be substantially lower than in PET, as anticipated from their isomeric chemical structures. This is because in PET the phenyl rings are substituted in the para (1,4) positions, which allows for their facile flipping, effectively permitting gases to pass through. However, the meta‐substituted phenyl rings in PEI do not permit such ring flipping, and thus PEI may be more suitable for barrier applications. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4247–4254, 2004  相似文献   
35.
Syndiotactic polystyrene (sPS) has various crystalline forms such as α, β, γ, and δ forms, and a mesophase depending on the preparation method. In this study, we focused on the mesophase with the molecular cavity of sPS, which is obtained by step‐wise extraction of the guest molecules from the sPS δ form. To prepare the mesophase containing different shapes and sizes of the cavity, two kinds of the sPS δ form membrane cast from either toluene or chloroform solution were first prepared and then the guest molecules were removed by a step‐wise extraction method using acetone and methanol. We could succeed in the preparation of two kinds of mesophase with different shapes and sizes of the molecular cavity. Either toluene or chloroform vapor sorption to the sPS mesophase membranes was examined at 25 °C. Sorption analysis indicates that the mesophase with large molecular cavities can mainly sorb large molecules; on the other hand, the mesophase with small cavities can sorb only the small molecules, and is unable to sorb a large amount of large molecule because the cavity was too small to sorb the large molecules. Therefore, the sPS mesophase membrane has sorption selectivity based on the size of the molecular cavity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 238–245, 2004  相似文献   
36.
Some discovery work was done on the synthesis of clay nanocomposites based on renewable plant oils. Functionalized triglycerides, such as acrylated epoxidized soybean oil, maleinized acrylated epoxidized soybean oil, and soybean oil pentaerythritol maleates, combined with styrene were used as the polymer matrix. The miscibility of these monomers and clay organomodifier was assessed by solubility parameters. The formation of nanocomposites was confirmed by both X‐ray data and transmission electron microscopy. The morphology showed a mix of intercalated and partially exfoliated sheets. The flexural modulus increased 30% at only 4 vol % clay content, but there was no significant effect on flexural strength, glass‐transition temperature, and thermal stability. Property enhancement was related to the degree of exfoliation that depends on both the polarity and flexibility of the monomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1441–1450, 2004  相似文献   
37.
Cyanex 923 has been proposed as a sensitive analytical reagent for the direct extractive spectrophotometric determination of cobalt(II). Cobalt(II) forms a blue-colored complex with Cyanex 923 in the organic phase. The maximum absorbance of the complex is measured at 635 nm. Beer's law was obeyed in the range 58.9 - 589.0 microg of cobalt. The molar absorptivitiy and Sandell's sensitivity of the complex was calculated to be 6.79 x 10920 l mol(-1) cm(-1) and 0.088 microg cm(-2), respectively. The nature of the extracted species was found to be Co(SCN)2 x 2S. An excellent linearity with a correlation coefficient value of 0.999 was obtained for the Co(II)-Cyanex 923 complex. Stability and regeneration of the reagent (Cyanex 923) for reuse is the main advantage of the present method. The method was successfully applied to the determination of cobalt in synthetic mixtures and pharmaceutical samples was found to give values close to the actual ones. Standard alloy samples, such as high-speed tool BCS 484 and 485, have been tested for the determination of cobalt for the purpose of validating the present method. The results of the proposed method are comparable with atomic absorption spectrometry and were found to be in good agreement.  相似文献   
38.
Controlled precipitation of the diagnostic imaging agent ethyl 3,5-di(acetylamino)-2,4,6-triiodobenzoate has been used to produce fine particles of various sizes, morphologies, and degrees of crystallinity, which depended on experimental conditions. In addition, two distinct polymorphic forms of the drug have been fully characterized by single crystal X-ray diffraction studies, and evidence for a third polymorph was also observed. Some of the so prepared dry particles were coated with a thin layer of silica.  相似文献   
39.
For a graph G and a positive integer m, G(m) is the graph obtained from G by replacing every vertex by an independent set of size m and every edge by m2 edges joining all possible new pairs of ends. If G triangulates a surface, then it is easy to see from Euler's formula that G(m) can, in principle, triangulate a surface. For m prime and at least 7, it has previously been shown that in fact G(m) does triangulate a surface, and in fact does so as a “covering with folds” of the original triangulation. For m = 5, this would be a consequence of Tutte's 5‐Flow Conjecture. In this work, we investigate the case m = 2 and describe simple classes of triangulations G for which G(2) does have a triangulation that covers G “with folds,” as well as providing a simple infinite class of triangulations G of the sphere for which G(2) does not triangulate any surface. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 79–92, 2003  相似文献   
40.
For three‐dimensional flows with one inhomogeneous spatial coordinate and two periodic directions, the Karhunen–Loeve procedure is typically formulated as a spatial eigenvalue problem. This is normally referred to as the direct method (DM). Here we derive an equivalent formulation in which the eigenvalue problem is formulated in the temporal coordinate. It is shown that this so‐called method of snapshots (MOS) has some numerical advantages when compared to the DM. In particular, the MOS can be formulated purely as a matrix composed of scalars, thus avoiding the need to construct a matrix of matrices as in the DM. In addition, the MOS avoids the need for so‐called weight functions, which emerge in the DM as a result of the non‐uniform grid typically employed in the inhomogeneous direction. The avoidance of such weight functions, which may exhibit singular behaviour, guarantees satisfaction of the boundary conditions. The MOS is applied to data sets recently obtained from the direct simulation of turbulence in a channel in which viscoelasticity is imparted to the fluid using a Giesekus model. The analysis reveals a steep drop in the dimensionality of the turbulence as viscoelasticity is increased. This is consistent with the results that have been obtained with other viscoelastic models, thus revealing an essential generic feature of polymer‐induced drag reduced turbulent flows. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号