首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2381篇
  免费   34篇
  国内免费   23篇
化学   1186篇
晶体学   10篇
力学   78篇
数学   405篇
物理学   759篇
  2022年   14篇
  2019年   15篇
  2018年   24篇
  2017年   18篇
  2016年   29篇
  2015年   20篇
  2014年   26篇
  2013年   78篇
  2012年   82篇
  2011年   121篇
  2010年   46篇
  2009年   36篇
  2008年   102篇
  2007年   117篇
  2006年   113篇
  2005年   101篇
  2004年   86篇
  2003年   79篇
  2002年   68篇
  2001年   41篇
  2000年   53篇
  1999年   32篇
  1998年   30篇
  1997年   29篇
  1996年   39篇
  1995年   36篇
  1994年   28篇
  1993年   62篇
  1992年   44篇
  1991年   42篇
  1990年   27篇
  1989年   36篇
  1988年   31篇
  1987年   49篇
  1986年   31篇
  1985年   43篇
  1984年   42篇
  1983年   29篇
  1982年   39篇
  1981年   42篇
  1980年   25篇
  1979年   36篇
  1978年   41篇
  1977年   26篇
  1976年   34篇
  1975年   40篇
  1974年   45篇
  1973年   33篇
  1972年   20篇
  1969年   18篇
排序方式: 共有2438条查询结果,搜索用时 15 毫秒
141.
We present measurements of equilibrium forces resulting from capillary condensation. The results give access to the ultralow interfacial tensions between the capillary bridge and the coexisting bulk phase. We demonstrate this with solutions of associative polymers and an aqueous mixture of gelatin and dextran, with interfacial tensions around 10 microN/m. The equilibrium nature of the capillary forces is attributed to the combination of a low interfacial tension and a microscopic confinement geometry, based on nucleation and growth arguments.  相似文献   
142.
Odd-parity rotating magnetic fields (RMFo) applied to mirror-configuration plasmas have produced average electron energies exceeding 200 eV at line-averaged electron densities of approximately 10(12) cm-3. These plasmas, sustained for over 10(3)tauAlfven, have low Coulomb collisionality, vc* triple bond L/lambdaC approximately 10(-3), where lambdaC is the Coulomb scattering mean free path and L is the plasma's characteristic half length. Divertors allow reduction of the electron-neutral collision frequency to values where the RMFo coupling indicates full penetration of the RMFo to the major axis.  相似文献   
143.
144.
Stromal cell-derived factor 1α (SDF-1α) or CXCL12 is a small pro-inflammatory chemoattractant cytokine and a substrate of dipeptidyl peptidase IV (DPP-IV). Proteolytic cleavage by DPP-IV inactivates SDF-1α and attenuates its interaction with CXCR4, its cell surface receptor. To enable investigation of suppression of such inactivation with pharmacologic inhibition of DPP-IV, we developed quantitative mass spectrometric methods that differentiate intact SDF-1α from its inactive form. Using top-down strategy in quantification, we demonstrated the unique advantage of keeping SDF-1α’s two disulfide bridges intact in the analysis. To achieve the optimal sensitivity required for quantification of intact and truncated SDF-1α at endogenous levels in blood, we coupled nano-flow tandem mass spectrometry with antibody-based affinity enrichment. The assay has a quantitative range of 20 pmol/L to 20 nmol/L in human plasma as well as in rhesus monkey plasma. With only slight modification, the same assay can be used to quantify SDF-1α in mice. Using two in vivo animal studies as examples, we demonstrated that it was critical to differentiate intact SDF-1α from its truncated form in the analysis of biomarkers for pharmacologic inhibition of DPP-IV activity. These novel methods enable translational research on suppression of SDF-1 inactivation with DPP-IV inhibition and can be applied to relevant clinical samples in the future to yield new insights on change of SDF-1α levels in disease settings and in response to therapeutic interventions.
Figure
?  相似文献   
145.
Metastable precursors are thought to play a major role in the ability of organisms to create mineralized tissues. Of particular interest are the hard and abrasion‐resistant teeth formed by chitons, a class of rock‐grazing mollusks. The formation of chiton teeth relies on the precipitation of metastable ferrihydrite (Fh) in an organic scaffold as a precursor to magnetite. In vitro synthesis of Fh under physiological conditions has been challenging. Using a combination of X‐ray absorption and electron paramagnetic resonance spectroscopy, we show that, prior to Fh formation in the chiton tooth, iron ions are complexed by the organic matrix. In vitro experiments demonstrate that such complexes facilitate the formation of Fh under physiological conditions. These results indicate that acidic molecules may be integral to controlling Fh formation in the chiton tooth. This biological approach to polymorph selection is not limited to specialized proteins and can be expropriated using simple chemistry.  相似文献   
146.
Recoil Spectrometry covers a group of techniques that are very similar to the well known Rutherford backscattering Spectrometry technique, but with the important difference that one measures the recoiling target atom rather than the projectile ion. This makes it possible to determine both the identity of the recoil and its depth of origin from its energy and velocity, using a suitable detector system. The incident ion is typically high-energy (30–100MeV)35C1,81Br or127I. Low concentrations of light elements such as C, O and N can be profiled in a heavy matrix such as Fe or GaAs. Here we present an overview of mass and energy dispersive recoil Spectrometry and illustrate its successful use in some typical applications.  相似文献   
147.
The behavior of a terminally anchored freely-jointed bead-rod chain, subjected to solvent shear flow, was investigated via Brownian dynamics simulations. Previous calculations have been improved by computing the segment density and fluid velocity profiles self-consistently. The segment density distributions, components of the radius of gyration, and chain attachment shear and normal stresses were found to be sensitive to low values of shear rate. Additionally, it was found that the thickness of a model polymer layer was a strong function of the shear rate, and that the functional dependence on shear rate changed dramatically as the chain length increased. For the longest chains studied, the thickness of the model polymer layer first increased as the shear rate increased, passed through a maximum, and then decreased at high shear rates, in accordance with experimental results in theta solvents. These results suggest that a dilute or semi-dilute layer model may explain hydrodynamic behavior previously thought to be due to the entanglements that occur in dense surface bound polymer layers.Nomenclature a i acceleration of bead i - b radius of the beads - d length of the rods connecting the chain beads - d i vector from bead i to bead i + 1 - F i external force applied to bead i - F i b external force on bead i due to Brownian motion of surrounding fluid - F i h external force on bead i due to viscous drag - F i s external force on bead i due to surface interactions - f Stokes drag coefficient - Boltzmann's constant - L h effective hydrodynamic thickness - m i mass of bead i - N number of beads on a model chain - n number of chains anchored to the surface per unit surface area - P segment density distribution P pressure - Q flow in a tube with no surface bound polymer layer - Q a flow in a tube with a surface bound polymer layer - R g vector representation of the radius of gyration - R tube radius - r radial coordinate in the tube geometry - S ij pair hydrodynamic interaction tensor for beads i and j - T i internal chain force in rod i connecting beads i and i + 1 - T X component of the surface attachment force in the direction of the fluid flow - T y component of the surface attachment force perpendicular to the surface - T temperature - v i velocity of the center of mass of bead i - V if average fluid velocity at the location of bead i - v if 0 fluid velocity in the absence of a polymer chain - v if perturbation to the fluid velocity due to hydrodynamic interactions - V b bead volume = 4 b 3/3 - scalar fluid speed in the axial direction down the tube - x axial coordinate in the tube geometry Greek symbols w apparent shear rate - fluid viscosity - polymer layer permeability - volume fraction of space occupied by chain beads - (w)a chain attachment stress perpendicular to the surface - (w)a chain attachment stress in the plane of the surface and in the direction of fluid flow  相似文献   
148.
A strategy for clustering of native lipid membranes is presented. It relies on the formation of complexes between hydrophobic chelators embedded within the lipid bilayer and metal cations in the aqueous phase, capable of binding two (or more) chelators simultaneously Fig. 1. We used this approach with purple membranes containing the light driven proton pump protein bacteriorhodopsin (bR) and showed that patches of purple membranes cluster into mm sized aggregates and that these are stable for months when incubated at 19 °C in the dark. The strategy may be general since four different hydrophobic chelators (1,10-phenanthroline, bathophenanthroline, Phen-C10, and 8-hydroxyquinoline) and various divalent cations (Ni2+, Zn2+, Cd2+, Mn2+, and Cu2+) induced formation of membrane clusters. Moreover, the absolute requirement for a hydrophobic chelator and the appropriate metal cations was demonstrated with light and atomic force microscopy (AFM); the presence of the metal does not appear to affect the functional state of the protein. The potential utility of the approach as an alternative to assembled lipid bilayers is suggested.  相似文献   
149.
A series of proteins was studied with respect to their ability to form a network at the air/water interface and their suitability as foaming agents and foam stabilizers. Proteins were chosen with a range of structures from flexible to rigid/globular: beta-casein, beta-lactoglobulin, ovalbumin, and (soy) glycinin. Experiments were performed at neutral pH except for glycinin, which was studied at both pH 3 and pH 6.7. The adsorption process was followed with an automated drop tensiometer (ADT). Network forming properties were assessed in terms of surface dilational modulus (determined with the ADT), the critical falling film length (L(still)) and flow rate (Q(still)) below which a stagnant film exists (as measured with the overflowing cylinder technique), and the fracture stress and fracture strain measured in surface shear. It was found that glycinin (pH 3) can form an interfacial gel in a very short time, whereas beta-casein has very poor network-forming properties. Hardly any foam could be produced at the chosen conditions with glycinin (pH 6.7) and with ovalbumin, whereas beta-casein, beta-lactoglobulin, and glycinin (pH 3) were good foaming agents. It seems that adsorption and unfolding rate are most important for foam formation. Once the foam is formed, a rigid network might favor stabilizing the foam.  相似文献   
150.
Crack front waves are nonlinear localized waves that propagate along the leading edge of a crack. They are generated by both the interaction of a crack with a localized material inhomogeneity and the intrinsic formation of microbranches. Front waves are shown to transport energy, generate surface structure, and lead to localized velocity fluctuations. Their existence locally imparts inertia, which is not incorporated in current theories of fracture, to initially "massless" cracks. This, coupled to microbranch formation, yields both inhomogeneity and scaling behavior within the fracture surface structure.  相似文献   
[首页] « 上一页 [10] [11] [12] [13] [14] 15 [16] [17] [18] [19] [20] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号