首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   7篇
化学   154篇
数学   11篇
物理学   11篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2014年   7篇
  2013年   6篇
  2012年   11篇
  2011年   9篇
  2010年   15篇
  2009年   5篇
  2008年   11篇
  2007年   7篇
  2006年   9篇
  2005年   12篇
  2004年   11篇
  2003年   13篇
  2002年   12篇
  2001年   2篇
  2000年   2篇
  1998年   2篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   4篇
  1981年   3篇
  1980年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有176条查询结果,搜索用时 31 毫秒
31.
Steroselective Alkylation at C(α) of Serine, Clyceric Acid, Threonine, and Tartaric Acid Involving Heterocyclic Enolates with Evocyelic Double Bonds The chiral, non-racemic title acids are converted to methyl dioxolane-(cf. 13 ), oxazoline-( 4 ) and oxazolidinecarboxylates (cf. 9 ). Deprotonation by Li(i-Pr) 2N at dry-ice temperature gives solutions of the lithium enolates A–D With exocyclic enolate double bonds. These are stable crough with respect to β-elimination (Scheme 1) to be alkylated with or without cosolvents such as HMPA or DMPU The products are formed in good to excellent yields and, with the exception of the tartrate-derived acetonlde (see Scheme 2), with diastereoselectivities above 90%. While the tartrate-and threonine-derived enolates ( A and B , resp.) are chiral due to the second stereogenic center of the precursors, the serine- and glyceric-acid-derived enolates ( A and B , resp.) are chiral due to the second sterogenic center of the precursors, the serine-nd glyceric-acid-derived enolates are non-racemic due to a tert butyl-substituted (pivalaldehyde-derived) acetal center ( C and D , resp.). The products of alkylation can be hydrolyzed to give α-branched tartaric acid (Scheme 2), allothreonine (Scheme 3), serine (Scheme 4), and glyceric-acid derivatives (Scheme 5) with quaternary stereogenic centers. The configurations of the products are determined by NOE-NMR measurements and by chemical correlation. These show that the dioxolane-derived enolates A and D are alkylated preferentially from that face of the ring which is already substituted (‘syn’-attack), while the dihydrooxazol-and oxazolidine-derived enolates B and C are alkylated from the opposite face (‘anti’-attack). The ‘syn’-attack is postulated to arise from strong folding of the heterocyclic ring due to electronic repulsion between the enolate π-system and non-bonding electron pairs on the heteroatoms (see Scheme 6).  相似文献   
32.
The properties of the spin state manifold of the tetranuclear cluster Ni[(OH)(2)Cr(bispictn)](3)]I(5).5H(2)O (bispictn = N,N'-bis(2-pyridylmethyl)-1,3-propanediamine) are investigated by combining magnetic susceptibility and magnetization measurements with an inelastic neutron scattering (INS) study on an undeuterated sample of Ni[(OH)(2)Cr(bispictn)](3)]I(5).5H(2)O. The temperature dependence of the magnetic susceptibility indicates an S = (1)/(2) ground state, which requires antiferromagnetic interactions both between Cr(3+) and Ni(2+) ions and among the Cr(3+) ions. INS reveals potential single-ion anisotropies to be negligibly small and enables an accurate determination of the exchange parameters. The best fit to the experimental energy level diagram is obtained by an isotropic spin Hamiltonian H = J(CrNi)(S(1)().S(4)() + S(2)().S(4)() + S(3)().S(4)()) + J(CrCr)(S(1)().S(2)() + S(1)().S(3)() + S(2)().S(3)()) with J(CrNi) = 1.47 cm(-)(1) and J(CrCr) = 1.25 cm(-)(1). With this model, the experimental intensities of the observed INS transitions as well as the temperature dependence of the magnetic data are reproduced. The resulting overall antiferromagnetic exchange is rationalized in terms of orbital exchange pathways and compared to the situation in oxalato-bridged clusters.  相似文献   
33.
The reaction of triisopropylsilylallyllithium with alkyl halides took place with considerably greater γ-selectivity than reported for trimethylsilyl allyllithium. Silica gel induced rearrangement of the epoxides 5 derived from the alkylation products 3 gave α-triisopropylsilyl aldehydes 6 by a process in which silyl group transposition occurred with predominant inversion at the migration terminus.  相似文献   
34.
α-Hydroxy- and α-mercapto-carboxylic acids are condensed with pivalaldehyde to give 2-t-butyl-5-substituted-l,3-dioxolanones or 1,3-oxathiolanones (2); the predominate CK-isomers are separated by crystallization. The cis-disubstituted heterocycles 2 derived from lactic, mandelic and malic acid furnish, after deprotonation with LDA, reaction with electrophiles such as alkyl halides, aldehydes and ketones, and hydrolysis α-branched α-hydroxy-carboxylic acids (3, 6, 8, 9, 10). These result from an overall substitution of the proton in the α-CO position with retention of configuration. The optically active carboxylic acids are α-alkylated without racemization and without employment of a chiral auxiliary (“self-reproduction of chirality”. Scheme I). The diastereoselectivities (ds) are generally > 95% (Table 1, 2, and 20-25).  相似文献   
35.
Plant–soil interactions are recognized to play a crucial role in the ecosystem response to climate change. We developed a facility to disentangle the complex interactions behind the plant–soil C feedback mechanisms. The MICE (‘Multi-Isotope labelling in a Controlled Environment’) facility consists of two climate chambers with independent control of the atmospheric conditions (light, CO2, temperature, humidity) and the soil environment (temperature, moisture). Each chamber holds 15 plant–soil systems with hermetical separation of the shared above ground (shoots) from the individual belowground compartments (roots, rhizosphere, soil). Stable isotopes (e.g. 13C, 15N, 2H, 18O) can be added to either compartment and traced within the whole system. The soil CO2 efflux rate is monitored, and plant material, leached soil water and gas samples are taken frequently. The facility is a powerful tool to improve our mechanistic understanding of plant–soil interactions that drive the C cycle feedback to climate change.  相似文献   
36.
37.
38.
2′3′-cGAMP is an uncanonical cyclic dinucleotide where one A and one G base are connected via a 3′-5′ and a unique 2′-5′ linkage. The molecule is produced by the cyclase cGAS in response to cytosolic DNA binding. cGAMP activates STING and hence one of the most powerful pathways of innate immunity. cGAMP analogues with uncharged linkages that feature better cellular penetrability are currently highly desired. Here, the synthesis of a cGAMP analogue with one amide and one triazole linkage is reported. The molecule is best prepared via a first CuI-catalyzed click reaction, which establishes the triazole, while the cyclization is achieved by macrolactamization.  相似文献   
39.
The current approach to improve and tune the enantioselective performances of transition-metal catalysts for asymmetric synthesis is mostly focused to modifications of the steric properties of the ancillary ligands of the active metal. Nevertheless, it is also known that electrostatic effects can have a remarkable role to promote selectivity in asymmetric synthesis. Using the Rh-catalyzed asymmetric 1,4-addition of phenylboronic acid to 2-cyclohexenone leading to chiral 3-phenylcyclohexanone as an example, we could show that high enantioselectivity can be indeed achieved using catalysts essentially based either on steric or electrostatic effects as the main source of enantioselective induction. In this contribution we suggest that the analysis of the surface of interaction between the catalyst and the substrate could be a useful tool to quantify the power of steric and electrostatic effects of catalysts.  相似文献   
40.
A family of chiral C(2)-symmetric disulfoxide ligands possessing biaryl atropisomeric backbones has been synthesized by using the Andersen methodology. Complete characterization includes X-ray crystallographic studies of all ligands and some of their rhodium complexes. Their synthesis, optical purity, electronic properties, and catalytic behavior in the prototypical rhodium-catalyzed 1,4-addition of phenylboronic acid to 2-cyclohexen-1-one are presented through an in depth study of this ligand class. Density functional theory calculations on the step of the catalytic cycle that determines the enantioselectivity are presented and reinforce the first hypothetical explanations for the high levels of asymmetric induction observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号