首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   475篇
  免费   10篇
  国内免费   1篇
化学   299篇
晶体学   18篇
力学   12篇
综合类   1篇
数学   49篇
物理学   107篇
  2023年   3篇
  2022年   12篇
  2021年   7篇
  2020年   4篇
  2019年   17篇
  2018年   10篇
  2017年   10篇
  2016年   27篇
  2015年   15篇
  2014年   17篇
  2013年   40篇
  2012年   34篇
  2011年   23篇
  2010年   22篇
  2009年   20篇
  2008年   18篇
  2007年   18篇
  2006年   27篇
  2005年   28篇
  2004年   19篇
  2003年   12篇
  2002年   11篇
  2001年   8篇
  2000年   2篇
  1999年   3篇
  1997年   3篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1990年   5篇
  1989年   6篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1980年   2篇
  1979年   5篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1974年   2篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1967年   1篇
  1948年   1篇
  1943年   2篇
  1941年   1篇
排序方式: 共有486条查询结果,搜索用时 265 毫秒
21.
A series of new mixed ligand complexes of Zn(II), Cd(II), and Hg(II) with cis-3,7-dimethyl-2,6-octadienthiosemicarbazone (CDOTSC; LH) and N-phthaloyl amino acids (AH) have been synthesized by the reaction of metal dichloride with ligands CDOTSC and N-phthaloyl derivative of DL-glycine (A1H), L-alanine (A2H), or L-valine (A3H) in a 1:1:1 molar ratio in dry refluxing ethanol. All the isolated complexes have the general composition [M(L)(A)]. The plausible structure of these newly synthesized complexes has been proposed on the basis of elemental analyses, molar conductances, molecular weight measurement, and various spectral (IR, 1H NMR, and 13C NMR) studies, and four coordinated geometries have been assigned to these complexes. All the complexes and ligands have been screened for their antibacterial activity.  相似文献   
22.
This study investigated thermodynamic properties of uranium–titanium alloy to determine its suitability for storage of hydrogen isotopes. The enthalpy increments of U2Ti were measured using a high temperature inverse drop calorimeter in the temperature range of 299–1,169 K. Temperature dependence of the molar enthalpy increment and molar heat capacity is expressed in the form $ H^\circ_{\text{m}} (T) - H^\circ_{\text{m}} (298.15\,{\text{K}})({\text{J }}\,{\text{mol}}^{ - 1} ) = 23.236(T/{\text{K}}) + 53.292 \times 10^{ - 3} (T/{\text{K}})^{2} - 21.294 \times 10^{5} ({\text{K}}/T) - 4523 $ and $ C^\circ_{\text{p,m}} ({\text{J}}\,{\text{K}}^{ - 1} \,{\text{g}}^{ - 1} ) = 23.236 + 10.6584 \times 10^{ - 2} (T/{\text{K}}) + 21.294 \times 10^{5} ({\text{K}}/T)^{2} (300 \le T/{\text{K}} \le 900) $ , respectively. A set of self consistent thermodynamic functions such as entropy, Gibbs energy function, heat capacity, and Gibbs energy and enthalpy values for U2Ti have been computed using data obtained in this study and required data from the literature.  相似文献   
23.
Solvent-free reactions were used for the synthesis of a series of imidazolium-based ionic salts: 3,3′-[pyridine-2,6-diylbis(methylene)]bis(1-R-1H-imidazol-3-ium)chloride; (R = methyl, ethyl, butyl, isobutyl, hexyl, and benzyl). A simple and effective filtration process was used to isolate all the products in high purity and with yields ?93% within a 24 h period. The highly pure ionic compounds which are precursors to N-heterocyclic carbene ligands used in catalysis were fully characterized as gray-white hygroscopic salts.  相似文献   
24.
Journal of Thermal Analysis and Calorimetry - A remarkable number of scientific papers are available in the literature about the bulk amorphous alloys and metallic glasses. Today, DSC is an...  相似文献   
25.
Relaxation dynamics of plasmons in Au−SiO2 core-shell nanoparticles have been followed by femtosecond pump-probe technique. The effect of excitation pump energy and surrounding medium on the time constants associated with the hot electron relaxation has been elucidated. A gradual increase in the electron-phonon relaxation time with pump energy is observed and can be attributed to the higher perturbation of the electron distribution in AuNPs at higher pump energy. Variation in time constants for the electron-phonon relaxation in different solvents is rationalized on the basis of their thermal conductivities, which govern the rate of dissipation of heat of photoexcited electrons in the nanoparticles. On the other hand, phonon-phonon relaxation is found to be much less effective than electron-phonon relaxation for the dissipation of energy of the excited electron and the time constants associated with it remain unaffected by thermal conductivity of the solvent.  相似文献   
26.
In this work, an economically viable, very low cost, indigenous, ubiquitously available electrochemical sensor based on bimetallic nickel and tungsten nanoparticles modified pencil graphite electrode (NiNP-WNP@PGE) was fabricated for the sensitive and selective detection of bisphenol A (BPA). The NiNP-WNP@PGE sensor was prepared by a facile electrochemical one step co-deposition method. The prepared nanocomposite was morphologically characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), electrochemically by cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The proposed sensor displayed high electrocatalytic activity towards electro-oxidation of BPA with one irreversible peak. The fabricated sensor displayed a wide detection window between 0.025 μM and 250 μM with a limit of detection of 0.012 μM. PGE sensor was successfully engaged for the detection of BPA in bottled water, biological, and baby glass samples.  相似文献   
27.
The development and fabrication of a simple, portable, and sensitive detection tool to precisely monitor nitrite level is of growing importance in electrochemistry research, given the strong interest in the protection of drinking water quality, treatment of wastewater, food production, and control of remediation processes. This work describes the fabrication of a simple, cost-effective, pen-type electrochemical sensor based on bimetallic gold and tungsten nanoparticles electrochemically decorated on graphene-chitosan modified pencil graphite electrode (PGE) for the trace detection of nitrite in real samples. The prepared nanocomposite was characterized using XRD, SEM, and EDS. The electrochemical behavior of the sensor was evaluated by cyclic voltammetry (CV) and impedance electrochemical spectroscopy (EIS). Results revealed that the proposed sensor displayed excellent electrocatalytic activity towards electro-oxidation of nitrite with an irreversible redox reaction. The AuNPs-WNPs@Gr-Chi/PGE sensor exhibited excellent analytical performance with a wide linear range from 10 to 250 μM towards nitrite. The LOD and LOQ were calculated to be 0.12 μM and 0.44 μM, respectively. The designed electrochemical sensor was successfully applied for the detection of nitrite in water, milk, and natural fruit juice samples.  相似文献   
28.
We have fabricated an immunosensor based on carbon nanotubes and chitosan (CNT-CH) composite for detection of low density lipoprotein (LDL) molecules via electrochemical impedance technique. The CNT-CH composite deposited on indium tin oxide (ITO)-coated glass electrode has been used to covalently interact with anti-apolipoprotein B (antibody: AAB) via a co-entrapment method. The biofunctionalization of AAB on carboxylated CNT-CH surface has been confirmed by Fourier transform infrared spectroscopic and electron microscopic studies. The covalent functionalization of antibody on transducer surface reveals higher stability and reproducibility of the fabricated immunosensor. Electrochemical properties of the AAB/CNT-CH/ITO electrode have been investigated using cyclic voltammetric and impedimetric techniques. The impedimetric response of the AAB/CNT-CH/ITO immunoelectrode shows a high sensitivity of 0.953?Ω/(mg/dL)/cm2 in a detection range of 0–120 mg/dL and low detection limit of 12.5 mg/dL with a regression coefficient of 0.996. The observed low value of association constant (0.34 M–1s–1) indicates high affinity of AAB/CNT-CH/ITO immunoelectrode towards LDL molecules. This fabricated immunosensor allows quantitative estimation of LDL concentration with distinguishable variation in the impedance signal.  相似文献   
29.
Propolis, also known as bee-glue, is a resinous substance produced by honeybees from materials collected from plants they visit. It contains mixtures of wax and bee enzymes and is used by bees as a building material in their hives and by humans for different purposes in traditional healthcare practices. Although the composition of propolis has been shown to depend on its geographic location, climatic zone, and local flora; two largely studied types of propolis: (i) New Zealand and (ii) Brazilian green propolis have been shown to possess Caffeic Acid Phenethyl Ester (CAPE) and Artepillin C (ARC) as the main bioactive constituents, respectively. We have earlier reported that CAPE and ARC possess anticancer activities, mediated by abrogation of mortalin-p53 complex and reactivation of p53 tumor suppressor function. Like CAPE, Artepillin C (ARC) and the supercritical extract of green propolis (GPSE) showed potent anticancer activity. In this study, we recruited low doses of GPSE and ARC (that did not affect either cancer cell proliferation or migration) to investigate their antistress potential using in vitro cell based assays. We report that both GPSE and ARC have the capability to disaggregate metal- and heat-induced aggregated proteins. Metal-induced aggregation of GFP was reduced by fourfold in GPSE- as well as ARC-treated cells. Similarly, whereas heat-induced misfolding of luciferase protein showed 80% loss of activity, the cells treated with either GPSE or ARC showed 60–80% recovery. Furthermore, we demonstrate their pro-hypoxia (marked by the upregulation of HIF-1α) and neuro-differentiation (marked by differentiation morphology and upregulation of expression of GFAP, β-tubulin III, and MAP2). Both GPSE and ARC also offered significant protection against oxidative stress and, hence, may be useful in the treatment of old age-related brain pathologies.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号