首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2551篇
  免费   82篇
  国内免费   4篇
化学   1788篇
晶体学   26篇
力学   67篇
数学   246篇
物理学   510篇
  2023年   24篇
  2022年   126篇
  2021年   107篇
  2020年   67篇
  2019年   65篇
  2018年   64篇
  2017年   49篇
  2016年   125篇
  2015年   85篇
  2014年   101篇
  2013年   143篇
  2012年   169篇
  2011年   205篇
  2010年   138篇
  2009年   115篇
  2008年   134篇
  2007年   141篇
  2006年   116篇
  2005年   93篇
  2004年   116篇
  2003年   71篇
  2002年   66篇
  2001年   41篇
  2000年   32篇
  1999年   25篇
  1998年   19篇
  1997年   18篇
  1996年   16篇
  1995年   15篇
  1994年   20篇
  1993年   14篇
  1992年   23篇
  1991年   12篇
  1989年   5篇
  1988年   6篇
  1987年   4篇
  1986年   8篇
  1985年   9篇
  1983年   6篇
  1982年   2篇
  1981年   6篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1973年   2篇
  1972年   7篇
  1971年   2篇
  1970年   2篇
排序方式: 共有2637条查询结果,搜索用时 0 毫秒
991.
Ugi condensations with O-protected hydroxylamines have been successfully performed in THF using ZnCl2 as activating agent. This synthetic strategy opens up the route to a very convergent assemblage of `internal' hydroxamic acid derivatives (N-acyl-N-hydroxypeptides).  相似文献   
992.
The interaction of redox enzymes with electrodes is of great interest for studying the catalytic mechanisms of redox enzymes and for bioelectronic applications. Efficient electron transport between the biocatalysts and the electrodes has achieved more success with soluble enzymes than with membrane enzymes because of the higher structural complexity and instability of the latter proteins. In this work, we report a strategy for immobilizing a membrane-bound enzyme onto gold electrodes with a controlled orientation in its fully active conformation. The immobilized redox enzyme is the Ni-Fe-Se hydrogenase from Desulfovibrio vulgaris Hildenborough, which catalyzes H(2)-oxidation reversibly and is associated with the cytoplasmic membrane by a lipidic tail. Gold surfaces modified with this enzyme and phospholipids have been studied by atomic force microscopy (AFM) and electrochemical methods. The combined study indicates that by a two-step immobilization procedure the hydrogenase can be inserted via its lipidic tail onto a phospholipidic bilayer formed over the gold surface, allowing only mediated electron transfer between the enzyme and electrode. However, a one-step immobilization procedure favors the formation of a hydrogenase monolayer over the gold surface with its lipidic tail inserted into a phospholipid bilayer formed on top of the hydrogenase molecules. This latter method has allowed for the first time efficient electron transfer between a membrane-bound enzyme in its native conformation and an electrode.  相似文献   
993.
The influence of ohmic heating on the death kinetic parameters of Escherichia coli ATCC® 25922 in goat milk and spores of Bacillus licheniformis ATCC® 14580 in cloudberry jam was investigated and compared with that of conventional heating. Ohmic treatment of goat milk shortened the decimal reduction time D in comparison with the D values obtained at conventional treatment. Similarly, the z value, increase of temperature required for a ten-fold reduction of D, was also lower at ohmic treatment. The death kinetics of Bacillus licheniformis ATCC® 14580 spores in cloudberry jam was also studied employing both types of heat treatment. Similar conclusions were obtained for the D values as in the case of goat milk. However, the differences between the z values obtained for ohmic and conventional heating were not significant.  相似文献   
994.
In recent years, there has been an increased interest in understanding the enzymatic mechanism of glycosidases resorting mostly to DFT and DFT/MM calculations. However, the performance of density functionals (DFs) is well known to be system and property dependent. Trends drawn from general studies, despite important to evaluate the quality of the DFs and to pave the way for the development of new DFs, may be misleading when applied to a single specific system/property. To overcome this issue, we carried out a benchmarking study of 40 DFs applied to the geometry optimization and to the electronic barrier height (E Barrier) and electronic energy of reaction (E R) of prototypical glycosidase‐catalyzed reactions. Additionally, we report calculations with SCC‐DFTB and four semiempirical MO methods applied to the same problem. We have used a universal molecular model for retaining glycosidases, comprising only a 22‐atoms system that mimics the active site and substrate. High accuracy reference geometries and energies were calculated at the CCSD(T)/CBS//MP2/aug‐cc‐pVTZ level of theory. Most DFs reproduce the reference geometries extremely well, with mean unsigned errors (MUE) smaller than 0.05 Å for bond lengths and 3° for bond angles. Among the DFs, wB97X‐D, CAM‐B3LYP, B3P86, and PBE1PBE have the best performance in geometry optimizations (MUE = 0.02 Å). Conversely, semiempirical MO and SCC‐DFTB methods yielded less accurate geometries (MUE between 0.09 and 0.17 Å). The inclusion of D3 correction has a small, but still relevant, influence in the geometry predicted by some DFs. Regarding E Barrier, 11 DFs (MPW1B95, CAM‐B3LYP, M06 ‐ 2X, PBE1PBE, wB97X ‐ D, B1B95, BMK, MN12 – SX, M05, M06, and M11) presented errors below 1 kcal.mol?1, in relation to the reference energy. Most of these functionals belong to the family of hybrid functionals (H‐GGA, HH‐GGA, and HM‐GGA), which shows a positive influence of HF exchange in the determination of E Barrier. The inclusion of D3 correction has not affected significantly the E Barrier and E R. The use of geometries at the accurate but expensive MP2/aug‐cc‐pVTZ level of theory has a small, albeit not insignificant, influence in the E Barrier when compared with energies calculated with geometries determined with the DFs (usually a few tenths of kcal.mol?1, with exceptions). In general, semiempirical MO methods and DFTB are associated with larger errors in the determination of E Barrier, with unsigned errors from 6.9 to 24.7 kcal.mol?1.  相似文献   
995.
996.
997.
In this article we report the development of an integrated microfluidic system coupled to a screen-printed carbon electrode (SPCE) applied to the quantitative determination of IgG specific antibodies present in serum samples of patients that suffer from Chagas disease. This relevant parasitic infection caused by the hemoflagellate protozoan Trypanosoma cruzi represents a major public health concern in Latin America. In order to perform the detection of mentioned antibodies, SPCE coupled to a microfluidic device was modified by electrodeposition of gold nanoparticles (AuNPs) and functionalized with Trypanosoma cruzi proteins from epimastigote membranes. The developed microfluidic immunosensor with immobilized T. cruzi proteins on the SPCE surface was successfully applied in the detection of specific IgG anti-T. cruzi antibodies, which were allowed to react immunologically with immobilized T. cruzi antigen. After that, labelled antibodies were quantified through the addition of horseradish peroxidase (HRP) enzyme-labeled secondary antibodies specific to human IgG, using 4-tert-butylcatechol (4-TBC) as enzymatic mediator. HRP in the presence of hydrogen peroxide (H(2)O(2)) catalyzes the oxidation of 4-TBC whose back electrochemical reduction was detected on a modified electrode at -100 mV. The calculated detection limit for electrochemical detection was 3.065 ng mL(-1) and the intra- and inter-assay coefficients of variation were below 6.95%.  相似文献   
998.
The synthesis of core‐shell Au nanoparticles protected by an amphiphilic block copolymer is investigated by distinct reversible addition fragmentation chain transfer (RAFT) emulsion polymerization routes. The controlled polymerization of polymer shells onto Au nanoparticles is attempted by using the macroRAFT (MR) agent based on 2‐(dodecylthiocarbonothioylthio)‐2‐methylpropionic acid synthesized via RAFT polymerization of poly(ethylene glycol) methyl ether acrylate and exploring several approaches, which include (i) post‐modification; (ii) in situ synthesis and (iii) “grafting from” strategies. In the conditions investigated here all these strategies lead to Au polymer nanocomposites but morphological well‐defined core‐shell nanoparticles are only obtained by applying the “grafting from” strategy. In particular, conditions that promote chain extension from the MR agent adsorbed onto the Au nanoparticles are found necessary to obtain nanostructures with such morphological characteristics and that still show the localized surface plasmon resonance typical of colloidal Au nanoparticles.  相似文献   
999.
A generalization of the concept of eigenvalue is introduced for a matrix pencil and it is called eigenpencil; an eigenpencil is a pencil itself and it contains part of the spectral information of the matrix pencil. A Wielandt type deflation procedure for regular matrix pencils is developed, using eigenpencils and supposing that they can have both finite and infinite eigenvalues. A numerical example illustrates the proposed method.  相似文献   
1000.
Cylindrical spacetimes with rotation are studied using the Newmann–Penrose formulas. By studying null geodesic deviations, the physical meaning of each component of the Riemann tensor is given. These spacetimes are further extended to include rotating dynamic shells, and the general expression of the surface energy-momentum tensor of the shells is given in terms of the discontinuity of the first derivatives of the metric coefficients. As an application of the developed formulas, a stationary shell that generates the Lewis solutions, which represent the most general vacuum cylindrical solutions of the Einstein field equations with rotation, is studied by assuming that the spacetime inside the shell is flat. It is shown that the shell can satisfy all the energy conditions by properly choosing the parameters appearing in the model, provided that 0 1, where is related to the mass per unit length of the shell. PACS numbers: 04.20Cv, 04.30.+x, 97.60.Sm, 97.60.Lf.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号